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Abstract 
 

This paper is both a summarization and extension of [6] and [7], where a stochastic model of interacting 

operations carried out in a generic Baltic Sea Region port was proposed and analyzed. Each operation involves a 

number of possible unwanted events (critical incidents) whose instances occur randomly and can cause instances 

of other events affecting this or other operations. This can lead to a cause-effect chain of events affecting one or 

multiple operations. The model presented in [6] is somewhat complex, therefore it was downgraded to a simpler, 

application-oriented version demonstrated in [7], where an algorithm computing the risks of critical incidents is 

constructed and then applied to a real-life example. The current paper, apart from presenting a method of 

computing the risks of critical incidents, occurring by themselves or resulting from the cascade effect, also 

features a method of root-cause analysis of such incidents. First, the formulas for the root-cause probabilities are 

derived, where such a probability quantifies the likelihood that a critical incident occurring in step h of a cascade 

was caused by another incident that initiated this cascade. Second, an algorithm computing the root-cause 

probabilities, based on the derived formulas, is constructed. This algorithm is illustrated by its application to the 

example given in [7]. The presented results can be used as a tool for fault propagation analysis and fault diagnosis 

applied not only to a port environment, but to any complex industrial system. 

 

 

1. Introduction  

The current paper summarizes in a condensed form 

the results obtained by the author (Jacek Malinowski) 

during the realization of the tasks undertaken as a 

participant of the HAZARD project. These results 

were presented in greater detail in the three following 

reports: “Modeling hazard-related interactions 

between the processes realized in and around the 

Baltic Sea Region ports”, “A simple tool for 

evaluating risks related to hazardous interactions 

between the processes realized in the Baltic Sea 

Region’s port areas” and “An algorithmic tool for 

supporting root-cause analysis of critical incidents in 

the Baltic Sea Region ports”. The first two reports 

were published in JPSRA – see [6] and [7]. In the first 

report a probabilistic model of hazard-related 

interactions between different operations carried out 

in a (generic) Baltic Sea Region port is presented. 

Each such operation, considering its hazardous aspect, 

can be defined as a series of undesired events (critical 

incidents) occurring at random instants, i.e. the 

operation is modeled by a random point process. An 

event can occur with different strengths measured by 

a discrete scale, however, in the second report, where 

the model is simplified for the sake of greater 

applicability, only binary events are considered, i.e. 

they either occur or not, strengths being irrelevant.  An 

event can be primary (occurring by itself) or 

secondary (caused by another event in the same or 

another process). The processes interact in the sense 

that an event in one process can cause a cascade of 

events (a chain of events linked by cause-effect 

relation) propagating through multiple processes. The 

direct cause-effect relations between the events are 

expressed by the first-grade cause-effect probabilities 

defined in Notation section. The formulas for cause-

effect probabilities of higher grades, expressing non-

direct relations, are given in Section 3. 
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The cause-effect probabilities are used for two 

main purposes. First, they serve to compute the risks 

of undesired events. Such a risk is defined as the 

probability that a given number of instances of one 

event occur in a given time interval. The respective 

formulas are given in Section 4. Second, they are used 

to obtain formulas for the root-cause probabilities 

which can be referred to as “reverse cause-effect 

probabilities”. Such a probability expresses the 

likelihood that the cascade in which a given event 

occurred, was initiated by another given event. The 

respective formulas are to be found in Section 5. Root-

cause probabilities are applied in the root-cause 

analysis of critical incidents. 

The presented results can be classified as methods 

of fault propagation analysis or fault diagnosis (areas 

of reliability engineering). Many authors use the  

Bayes network approach to address these issues –  

surveys of recent relevant developments can be found 

in [2] and [4]. In the current paper the process-oriented 

approach to the considered issues is pursued – see [1], 

[3], [5], [8] and [9] for a broader scope of the topic. 

This summary is focused on the practical results 

of the work on the project. They consist of two 

algorithms the first of which computes the risks of 

different critical incidents that can happen in the port 

area, and the second one computes the root-cause 

probabilities of critical incidents occurring in a certain 

step of a cascade. The algorithms written in a pseudo-

code are to be found in Sections 4 and 5. They are 

illustrated with their application to a real-life example 

in Section 6. 

 

2. Notation, definitions, and fundamental 

assumptions 

General notation: 

O(1),…, O(n) – the stochastic processes representing 

different operations carried out in the considered port 

area; O(i) represents the series of critical incidents that 

occur during the respective operation, i=1,…,n   

E1
(i),…,Em(i)

(i) – different events that can occur in 

process O(i)
 ; m(i) – the number of these events 

1
(i),…,m(i)

(i) – the intensities of occurrences of   

E1
(i),…,Em(i)

(i) as primary events; a
(i)(t – s) is the 

average number of occurrences of Ea
(i) as a primary 

event in the time interval (s, t], which means that the 

sequence of primary events Ea
(i) is a Poisson process 

with the intensity a
(i) 

∐i=1,…,r xi – the “inverted pi” operation on numbers 

from the [0, 1] interval, defined as follows: 

∐ 𝑥𝑖𝑖=1,…,𝑟 = 1 − ∏ (1 − 𝑥𝑖)𝑖=1,…,𝑟   

The “inverted pi” operation computes the probability 

of a sum of independent events, i.e. Pr(⋃i=1,…,r Ai) =    

= ∐i=1,…,r P(Ai) if the events A1,…,Ar are independent. 

 

The cause-effect probabilities: 

p(i,j)(a, b, 1) – probability that an occurrence of Ea
(i) 

directly causes an occurrence of Eb
(j) (first grade 

cause-effect probability) 

p(i,j)(a, b, h) – probability that an occurrence of Eb
(j) 

takes place in step h (and not less-than-h) of a cascade 

initiated by Ea
(i) (cause-effect probability of grade h), 

h2 

P(i,j)(a, b) – probability that an occurrence of Eb
(j) takes 

place in any step of a cascade initiated by Ea
(i) 

 

In stochastic terms, p(i,j)(a, b, h), h1, can be 

interpreted as the conditional probability that an 

instance of Eb
(j) occurs in a cascade in its step h (and 

not less-than-h), provided that the cascade is initiated 

by Ea
(i). The above definitions yield  that 

𝑃(𝑖,𝑗)(𝑎, 𝑏) = ∑ 𝑝(𝑖,𝑗)(𝑎, 𝑏, ℎ)ℎ≥1   (1) 

In practice, it is sufficient to compute the above sum 

for hhmax, where p(i,j)(a, b, h) are negligibly small if 

h>hmax. 

 

Intensities of critical incidents: 

b
(j)(h) – intensity of occurrences of Eb

(j) in step h 

(and not less-than-h) of cascades initiated by any 

primary events 

b
(j) – intensity with which occurrences of Eb

(j) take 

place as primary or secondary events 

 

Risks of critical incidents: 

Rb
(j)(k, s, t, 0) – probability that exactly k instances of 

Eb
(j) as a primary event occur in the time interval (s, t] 

Rb
(j)(k, s, t, h) – probability that exactly k instances of  

Eb
(j) occur in the time interval (s, t], where each 

occurrence takes place in step h (and not less-than-h) 

of a cascade initiated by some primary event, h1 

Rb
(j)(k, s, t) – probability that exactly k instances of 

Eb
(j) as a primary or secondary event occur in the time 

interval (s, t] 

 

Root-cause probabilities: 

r-c(j,i)(b, a | h) – probability that an instance of Eb
(j), 

provided that it occurs in step h (and not less-than-h) 

of a cascade, was caused by an instance of Ea
(i) 

initiating this cascade, h1  

r-c(j,i)(b, a, h) – probability that an instance of Eb
(j) 

occurs in step h (and not less-than-h) of a cascade and 

was caused by an instance of Ea
(i) initiating this 

cascade, h1  
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R-C(j,i)(b, a) – probability that an instance of Eb
(j), 

occurring as a secondary event in a certain step of a 

cascade, was caused by an instance of Ea
(i) initiating 

this cascade, (j,b)(i,a) 

R-C(j,j)(b, b) – probability that an instance of Eb
(j) 

occurs as a primary event 

 

In stochastic terms, c(j,i)(b, a | h), h1, can be 

interpreted as the conditional probability that Ea
(i) 

initiates a cascade, given that Eb
(j) occurs in its step h 

(and not less-than h). In turn, c(j,i)(b, a, h) is the 

(unconditional) probability that Eb
(j) occurs in a 

cascade in its step h (but not less-than-h), and the 

cascade was initiated by Ea
(i). The first three 

probabilities in the above group quantify in three 

different ways the likelihood that Ea
(i) is the root cause 

of Eb
(j), whence their name. The last probability is not 

actually a root-cause one, but it can be regarded as 

such if we assume that an event can be a root-cause of 

itself.  

 

This section ends with the list of assumptions upon 

which the considered model of interacting operations 

carried out in a port area is constructed. Some of these 

assumptions are repeated from the Introduction for the 

sake of self-containment.   

 

1) Critical incidents occurring in the considered 

environment are modeled by n random processes 

denoted as O(i), i=1,…,n. 

2) m(i) different events can occur in process O(i); they 

are denoted as Ea
(i), a=1,…,m(i). 

3) An event can be either primary (occurring by itself) 

or secondary (caused by another event). 

4) All primary events are mutually independent. 

5) The instances of primary event Ea
(i) in process O(i) 

occur according to a Poisson process with known 

intensity a
(i). 

6) The probability that event Ea
(i) in process O(i) 

directly causes event Eb
(j) in process Oj , is known for 

each combination of the indices i, j, a, b used for 

numbering the processes and events. It is referred to 

as first grade cause-effect probability and denoted as 

p(i,j)(a, b, 1). Clearly, if no cause-effect relation exists 

between Ea
(i) and Eb

(j), then p(i,j)(a, b, 1)=0.  

7) The intensities a
(i) and first-grade cause-effect 

probabilities p(i,j)(a, b, 1) can be obtained from the 

available statistical data and/or by way of expert 

elicitation. The probabilities p(i,j)(a, b, h), h2, can be 

computed using the method presented in Section 3. 

8) Events can occur in a cause-effect chain called a 

cascade; the events in a cascade succeed each other 

instantaneously, thus cascades, like their initiating 

primary events, are mutually independent. 

3. Computing the cause-effect probabilities of 

grades greater than one 
 

3.1. The basic lemma 
 

The cause-effect probabilities of higher grades can be 

computed with the use of the following lemma which 

provides a recursive formula relating the cause-effect 

probabilities of grade h to those of grade h–1, h2 : 

 

Lemma 1 

For h1 we have: 

𝑝(𝑖,𝑖)(𝑎, 𝑎, ℎ) = 0    (2) 

while for h2 and (j,b)  (i,a) the following recursive 

formula holds: 

𝑝(𝑖,𝑗)(𝑎, 𝑏, ℎ) = [1 − 𝑝(𝑖,𝑗)(𝑎, 𝑏, 1)] ×  

    × ∐ [
𝑝(𝑖,𝑘)(𝑎, 𝑐, 1) ×

𝑝(𝑘,𝑗)(𝑐, 𝑏, ℎ − 1)
]𝑘=1,…,𝑛

𝑐=1,…,𝑚(𝑘)

  (3) 

Proof: Let Ec,k,b,j
(h), h1, be an event defined as 

follows: 

Ec,k,b,j
(h) = { an instance of Eb

(j) occurs in step h, but not 

in step <h, of the cascade triggered by an instance 

of Ec
(k) } 

The equality (2) holds for h1, i=1,…,m, a=1,…,m(i), 

because the underlying events Ea,i,a,i
(h) are impossible. 

Indeed, in order for Ea,i,a,i
(h) to occur, the triggering 

event Ea
(i) should take place at step 0 of the cascade, 

but the definition of Ea,i,a,i
(h) yields that Ea

(i) cannot 

occur at step <h, hence Ea,i,a,i
(h) is an impossible event 

for h1. 

Let now h2 and (j,b)(i,a). The event Ea,i,b,j
(h) 

takes place if 

1) the event Ea,i,b,j
(1) does not occur and 

2) a pair of consecutive events Ea,i,c,k
(1) and Ec,k,b,j

(h–1) 

occurs, where k=1,…,n, c=1,…,m(k), (k,c)(j,b). 

The first condition and the inequality (k,c)(j,b) in the 

second condition are equivalent. They ensure that Eb
(j) 

does not occur in step 1, which is required in the 

definition of Ea,i,b,j
(h). We thus have: 

𝑝(𝑖,𝑗)(𝑎, 𝑏, ℎ) =  

    = Pr

[
 
 
 
 (¬𝐸𝑎,𝑖,𝑏,𝑗

(1)) ∩

(⋃ [𝐸𝑎,𝑖,𝑐,𝑘
(1) ∩ 𝐸𝑐,𝑘,𝑏,𝑗

(ℎ−1)
]𝑘=1,…,𝑛

𝑐=1,…,𝑚(𝑘)

(𝑘,𝑐)≠(𝑗,𝑏)

)

]
 
 
 
 

 (4) 

As follows from assumptions 4 and 8 in the 

last part of Section 2, the triggering events along with 

the triggered cascades are mutually independent, 

hence (3) is a direct consequence of (4). Let us note 
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that (k,c)=(j,b) can be included in the range of the 

operator “inverted pi” in (3), because, in view of (2), 

if (k,c)=(j,b) then p(i,k)(a, c, 1)p(k,j)(c, b, h–1) 

= p(i,j)(a, b, 1)p(j,j)(b, b, h–1) = 0.  

 

Remark 1: When applying (3) it should be taken into 

account that, according to (2), p(i,k)(a, c) = 0 for 

(k,c)=(i,a). 

 

Remark 2: The proof of Lemma 1 was provided in [7], 

but it is repeated here in order that the report be self-

contained. 

 

3.2. The matrix of cause-effect probabilities 

 
The behavior of the considered multi-process 

environment can be described by the collection of 

matrixes (i,j)(h), i,j=1,…,n, h1, where 

(i,j)(h)[a, b] = p(i,j)(a, b, h) is the element in row a and 

column b of matrix (j,i)(h), a=1,…,m(i), b=1,…,m(j). 

The matrix (i,j)(h) expresses the impact of events 

occurring in process pi on the events in process pj, 

where the latter events occur in step h (and not less-

than-h) of cascades initiated by the former events. For 

a fixed h, the matrixes (i,j)(h), i,j=1,…,n, can be 

arranged in the matrix (h) as shown in Fig. 1. 

 

 

Fig. 1. Matrix (h) composed of matrixes (i,j)(h), 

i,j=1,…,n. 

 

Let us note that (h) is a square matrix, because 

(i,j)(h) has m(i) rows and m(j) columns, hence (h) 

has i=1,…,n m(i) rows and j=1,…,n m(j) columns, and 

these sums are equal. It should also be noted that, 

according to (2), p(i,j)(a, b, h) is computed using the 

elements from row a of (i,k)(1) and column b of 

(k,j)(h–1), where k changes from 1 to n. This means 

that in order to obtain (h)[ m(1)+…+m(i–

1)+a, m(1)+…+m(j–1)+b ], i.e. the element of (h) 

located in row m(1)+…+m(i–1)+a and column 

m(1)+…+m(j–1)+b , we use the elements from row 

m(1)+…+m(i–1)+a of (1) and column 

m(1)+…+m(j–1)+b of (h–1), which is analogous to 

obtaining the elements of a product of two matrices. 

As known from matrix algebra, such a product is 

computed using the following formula: 

(A  B)[q, r] =  s=1,…,K A[q, s]B[s, r]  (5) 

where  is the matrix multiplication operator and K is 

the number of A’s columns or B’s rows. Clearly, the 

number of A’s columns must be equal to the number 

of B’s rows. 

By analogy to the operation  let us define the 

matrix operation  as follows: 

(A  B)[q, q] = 0    (6) 

and 

(A  B)[q, r] = 

    = (1 – A[q, r])∐s=1,…, (A)A[q, s]B[s, r]  (7) 

for qr, where ∐ is the “inverted pi” operation defined 

in Notation section. Let us note that (2) and (3) can be 

replaced with (6) and (7) if we put A=(1) and B=(h–

1). We can thus write (2) and (3) in a much simpler 

form: 

(h) = (1)  (h–1),  h2   (8) 

As follows from the previous paragraph, the element 

in row q and column r of (h) is obtained using the 

elements in row q of (1) and column r of (h–1), 

similarly as in matrix multiplication. However, 

comparing (5) with (6) and (7) we see that  is not the 

matrix multiplication operation. Nonetheless, the 

numerical complexity of the operations  and  is 

almost the same and formula (8) is far less 

complicated and more convenient for computer 

implementation than formulas (2) and (3). The 

obtained matrix of cause-effect probabilities is used to 

easily compute the intensities of secondary events that 

are also needed for computing the root-cause 

probabilities. The formulas for those intensities are 

presented in the next section. 

 

4. Computing the intensities of secondary 

events and their risks 
 

This section starts with one assertion and one theorem. 

This theorem was already given in [4], but here it is 

presented in a simplified version, without strength of 

events being taken into account. 

 

Assertion 1 

Primary events Eb
(j) constitute a Poisson process with 

the intensity b
(j). 

 

The above assertion repeats of one of the assumptions 

formulated in Section 2. In turn, the theorem given 

below pertains to the instances of one event such that 

each instance occurs in step h (and not less-than-h) of 

a certain cascade, h1. This theorem states that the 

events in question also constitute a Poisson process. 
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Theorem 1 

The instances of Eb
(j), each occurring in step h (and 

not less-than-h) of a cascade triggered by an instance 

of Ea
(i) as a primary event, constitute a Poisson process 

with the intensity a,b
(i,j)(h) = a

(i)  p(i,j)(a, b, h), where 

the probabilities p(i,j)(a, b, h) are given by (2) and (3) 

or by (8).   

Further, the instances of Eb
(j), each occurring in 

step h (and not less-than-h) of a cascade triggered by 

any primary event in any process, constitute a Poisson 

process with the intensity given by the following 

formula: 

𝜆𝑏
(𝑗)(ℎ) = ∑ 𝜆𝑎

(𝑖) ⋅ 𝑝(𝑖,𝑗)(𝑎, 𝑏, ℎ)𝑖=1,…,𝑛
𝑎=1,…,𝑚(𝑖)

 (9) 

where, according to (2), p(i,j)(a, b, h)=0 for (a,i)=(b,j). 

 

Proof: Na
(i)(s, t) be the number of primary instances of 

Ea
(i) in interval (s, t]. Let Na,b

(i,j)(s, t, h) be the number 

of instances of  Eb
(j) occurring in interval (s,t] in step 

h (and not less-than-h) of cascades triggered by 

primary instances of Ea
(i). We have: 

Pr [𝑁𝑎,𝑏
(𝑖,𝑗)(𝑠, 𝑡, ℎ) = 𝑟] =  

∑ 𝑃𝑟

(

 
 
 
 

𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 𝐸𝑎
(𝑖)

 

𝑐𝑎𝑢𝑠𝑒 𝑟 𝑒𝑣𝑒𝑛𝑡𝑠 𝐸𝑏
(𝑗)

𝑖𝑛 𝑠𝑡𝑒𝑝 ℎ 
𝑜𝑓 𝑐𝑎𝑠𝑐𝑎𝑑𝑒𝑠

𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝐸𝑎
(𝑖)

|

|
𝑁𝑎

(𝑖)(𝑠, 𝑡) = 𝑞

)

 
 
 
 

×∞
𝑞=𝑟   

         × Pr (𝑁𝑎
(𝑖)(𝑠, 𝑡) = 𝑞) =  

∑ (𝑞
𝑟
) [𝑝

(𝑖,𝑗)(𝑎, 𝑏, ℎ)]
𝑟
[1 − 𝑝

(𝑖,𝑗)(𝑎, 𝑏, ℎ)]
𝑞−𝑟

×∞
𝑞=𝑟   

    ×
[𝜆𝑎

(𝑖)
⋅ (𝑡−𝑠)]

𝑞

𝑞!
exp [−𝜆𝑎

(𝑖) ⋅ (𝑡 − 𝑠)] =  

[𝜆𝑎
(𝑖)

⋅𝑝
(𝑖,𝑗)(𝑎,𝑏,ℎ)⋅(𝑡−𝑠)]

𝑟

𝑟!
exp [−𝜆𝑎

(𝑖) ⋅ (𝑡 − 𝑠)] ×  

    × ∑

𝑞!

(𝑞−𝑟)!
[1 − 𝑝

(𝑖,𝑗)(𝑎, 𝑏, ℎ)]
𝑞−𝑟

×

×
[𝜆𝑎

(𝑖)
⋅ (𝑡−𝑠)]

𝑞−𝑟

𝑞!

∞
𝑞=𝑟 =  

 
[𝜆𝑎

(𝑖)
⋅𝑝

(𝑖,𝑗)(𝑎,𝑏,ℎ)⋅(𝑡−𝑠)]
𝑟

𝑟!
exp [−𝜆𝑎

(𝑖) ⋅ (𝑡 − 𝑠)] ×  

    × ∑ [1 − 𝑝
(𝑖,𝑗)(𝑎, 𝑏, ℎ)]

𝑞−𝑟 [𝜆𝑎
(𝑖)

⋅ (𝑡−𝑠)]
𝑞−𝑟

(𝑞−𝑟)!
∞
𝑞=𝑟 =  

 
[𝜆𝑎

(𝑖)
⋅𝑝

(𝑖,𝑗)(𝑎,𝑏,ℎ)⋅(𝑡−𝑠)]
𝑟

𝑟!
exp [−𝜆𝑎

(𝑖)
⋅ (𝑡 − 𝑠)] ×  

    × exp ([1 − 𝑝
(𝑖,𝑗)(𝑎, 𝑏, ℎ)] [𝜆𝑎

(𝑖) ⋅  (𝑡 − 𝑠)]) =  

[𝜆𝑎
(𝑖)

⋅𝑝
(𝑖,𝑗)(𝑎,𝑏,ℎ)⋅(𝑡−𝑠)]

𝑟

𝑟!
×  

    × exp [−𝜆𝑎
(𝑖)

⋅ 𝑝
(𝑖,𝑗)(𝑎, 𝑏, ℎ) ⋅ (𝑡 − 𝑠)]  

Thus, the first of the above expressions is equal to the 

last one, which yields the first part of the theorem. 

Let now Nb
(j)(s, t, h) be the number of instances of  

Eb
(j) occurring in interval (s,t] in step h (and not less-

than-h) of cascades triggered by primary instances of 

any event different than Eb
(j). Due to the assumption 

that primary events in all the processes are mutually 

independent, and cascades of events occur 

instantaneously, the above instances of Eb
(j) constitute 

a Poisson process which is a superposition of 

independent Poisson processes with the intensities 

a
(i), a=1,…,n, i=1,…,m(i), (a,i)(b,j). The second part 

and the whole theorem are thus proved. 

 

Remark: The proof of (9) is also provided in [6], in the 

extended version taking into account the strengths of 

events. 

 

In order to shorten the notation and simplify the 

computer implementation, (9) can be expressed in the 

following simpler form: 

(h) = (0)  (h)    (10) 

where  is the usual matrix multiplication operation, 

(h) is defined in Fig. 1, while  and (h) are one-row 

matrices defined as follows: 

(0) = [ 1
(1), …, m(1)

(1); 1
(2), …, m(2)

(2); … ; 

    1
(n), …, m(n)

(n) ]    (11) 

(h) = [1
(1)(h),…, m(1)

(1)(h); 1
(2)(h),…, m(2)

(2)(h); 

    … ; 1
(n)(h),…, m(n)

(n)(h) ]   (12) 
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Thus,  and (h) are composed of the intensities of all 

events in all processes, where the events respectively 

occur as primary or in step h (and not less-than-h). It 

should be noted that formulas (9), (10) and (12) hold 

for h1. 

Let us now define the stochastic process O(b,j)(t) as 

the (random) number of instances of Eb
(j), no matter 

whether primary or not, in the time interval (0, t]. The 

following theorem holds: 

 

Theorem 2 

O(b,j)(t) is a Poisson process with the following 

intensity: 

b
(j) = b

(j) + h1 b
(j)(h)    (13) 

In practice, the sum in (13) is only computed for 

several values of h, i.e. for hhmax, where b
(j)(h) are 

negligibly small for h>hmax. 

 

Proof: Due to the assumption that primary events in 

all the processes are mutually independent, and 

cascades of events occur instantaneously, O(b,j)(t) is a 

superposition of independent processes O(b,j,h)(t) h0, 

where O(b,j,h)(t) is defined as the (random) number of 

instances of Eb
(j) in the interval (0, t], where each 

instance is a primary event if h=0, or occurs in step h 

(and not less-than-h) of a cascade triggered by an 

instance of any event different than Eb
(j). From 

Assertion 1 and Theorems 1 and 2 it follows that 

O(b,j)(t) is a Poisson process with the intensity given by 

(13), Q.E.D. 

 

Theorem 3 

Formula (13) can be written in the following simpler 

form: 

 = (0) + (0)  h1 (h)   (14) 

where + and  are the usual addition operations on 

matrices, and  is a one-row matrix composed of the 

intensities b
(j), and defined as follows: 

 = [ 1
(1),…, m(1)

(1),…, 1
(n),…, m(n)

(n) ] (15) 

In practice, the sum in (14) is only computed for 

several values of h, i.e. for hhmax, where the elements 

of (h) are negligibly small for h>hmax. 

 

Proof: Formula (13) and the definition of  given by 

(15) yield: 

 = (0) + h1 (h)    (16) 

In view of (10) and distributivity of matrix 

multiplication w.r.t. addition, the above equality 

converts to: 

 

 

 = (0) + h1 (0)  (h) = 

    = (0) + (0)  h1 (h)   (17) 

Q.E.D. 

 

Corollary: 

With the use of (14) the elements of  are computed 

significantly faster than by using (13) or (16). If (13) 

or (16) along with (9) or (10) is applied, then (h) is 

computed individually for each hhmax, i.e. hmax matrix 

multiplications are executed. In turn, (14) only 

requires the execution of one matrix multiplication 

and hmax–1 additions, and adding (h) to (h–1) is 

numerically less complex than multiplying  by (h). 

However, we need (h) if we want to compute the 

root-cause probabilities related to step h of cascades, 

as shown in the next section. 

 

Theorems 1 and 2 yield the following formulas for 

the risks of critical incidents whose definitions can be 

found in Section 2: 

𝑅𝑏
𝑗(𝑘, 𝑠, 𝑡, 0) =  

    =
[𝜆𝑏

(𝑗)
⋅(𝑡−𝑠)]

𝑘

𝑘!
⋅ exp [−𝜆𝑏

(𝑗)
⋅ (𝑡 − 𝑠)]  (18) 

𝑅𝑏
𝑗(𝑘, 𝑠, 𝑡, ℎ) =  

    =
[𝜆𝑏

(𝑗)(ℎ)⋅(𝑡−𝑠)]
𝑘

𝑘!
⋅ exp [−𝜆𝑏

(𝑗)(ℎ) ⋅ (𝑡 − 𝑠)] (19) 

𝑅𝑏
𝑗(𝑘, 𝑠, 𝑡) = ∑ 𝑅𝑏

𝑗(𝑘, 𝑠, 𝑡, ℎ)ℎ≥0 =  

    =
[Λ𝑏

(𝑗)
⋅(𝑡−𝑠)]

𝑘

𝑘!
⋅ exp [−Λ𝑏

(𝑗)
⋅ (𝑡 − 𝑠)]  (20) 

Based on the results of Sections 3 and 4, the risks 

of critical incidents can be computed with the use of 

the following algorithm: 

 

Algorithm 1 

1. Arrange the input data into the matrixes (0) and 

(1) defined respectively by (11) and Fig. 1 

2. Using (8), determine the matrices (h), h2 

3. Using (10), determine the matrices (h), h1 

defined by (12)  

4. Using (13) or (14), determine the matrix  defined 

by (15) 

5. Compute from (20) the matrix of risks Rb
(j)(k, s, t), 

j=1,…,n, b=1,…,m(j) for different k, s and t. If a more 

detailed analysis is needed, also compute from (18) 

and (19) the matrixes of risks Rb
(j)(k, s, t, h), h0 
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5. Computing the root-cause probabilities of 

critical incidents 
 

The root-cause probabilities defined in Section 2 are 

necessary to perform the root-cause analysis of critical 

incidents occurring in processes O(1),…,O(n). These 

probabilities are calculated using the formulas given 

in Theorem 4 which is a consequence of the following 

lemma.  

 

Lemma 2 

Let A1,…,Am , occurring independently with the 

intensities 1,…, m respectively, be the cascade 

initiating events which can cause (directly or not) an 

event B in step h of the initiated cascade. Then, the 

root cause probability that B was caused by Ai. is 

given by the following formula: 

Pr(𝐴𝑖|𝐵) =  

    = 𝜇𝑖 Pr(𝐵|𝐴𝑖) ∑ 𝜇𝑘 Pr(𝐵|𝐴𝑘)𝑚
𝑘=1⁄ ,  (21) 

where i=1,…,m. 

 

Proof: Let us redefine A1,…,Am and B as follows: 

Ai = {a cascade is initiated by Ai} 

B = {B occurs in step h of a cascade, h1} 

The law of total probability yields: 

Pr(𝐵) = ∑ Pr(𝐵|𝐴𝑘) Pr(𝐴𝑘)𝑚
𝑘=1   (22) 

Applying the Bayes theorem and using (22), we obtain 

Pr(𝐴𝑖|𝐵) = Pr(𝐵|𝐴𝑖) Pr(𝐴𝑖) Pr(𝐵)⁄ =  

    = Pr(𝐵|𝐴𝑖) Pr(𝐴𝑖) ∑ Pr(𝐵|𝐴𝑘) Pr(𝐴𝑘)𝑚
𝑘=1⁄  (23) 

Since the instances of Ai occur according to a Poisson 

process with the intensity i, and the processes are 

mutually independent for i=1,…,m, it holds that 

Pr(𝐴𝑖) =
𝜇𝑖

𝜇1+⋯+𝜇𝑚
    (24) 

Replacing Pr(Ai) and Pr(Ak) in (23) according to (24), 

yields formula (21). This completes the proof. 

 

Corollary: 

Using the “forward” probabilities Pr(E|Ai), expressing 

the “forward” stochastic relations between causes and 

their possible effects, we can compute, using (21), the 

“backward” probabilities Pr(Ai|E) expressing the 

“backward” stochastic relations between effects and 

their possible causes.  

 

Now the theorem mentioned in the beginning of 

this section can be formulated. 

 

Theorem 4 

The root-cause probabilities defined in Section 2 are 

given by the following formulas: 

𝑐(𝑗,𝑖)(𝑏, 𝑎|ℎ) =  

    = 𝜆𝑎
(𝑖)

𝑝(𝑖,𝑗)(𝑎, 𝑏, ℎ)/𝜆𝑏
(𝑗)(ℎ), ℎ ≥ 1  (25) 

𝑐(𝑗,𝑖)(𝑏, 𝑎, ℎ) =  

    = 𝜆𝑎
(𝑖)

𝑝(𝑖,𝑗)(𝑎, 𝑏, ℎ)/𝛬𝑏
(𝑗)

,   ℎ ≥ 1  (26) 

𝐶(𝑗,𝑖)(𝑏, 𝑎) =  

    = 𝜆𝑎
(𝑖)

𝑃(𝑖,𝑗)(𝑎, 𝑏)/Λ𝑏
(𝑗)

,   (𝑖, 𝑎) ≠ (𝑗, 𝑏)  (27) 

𝐶(𝑗,𝑗)(𝑏, 𝑏) = 𝜆𝑏
(𝑗)

/Λ𝑏
(𝑗)

    (28) 

where P(i,j)(a,b) in (27) is given by (1). It should be 

noted that p(i,j)(a, b, h)=0 for (i,a)=(j,b), hence there is 

no need to assume in (25) and (26) that (i,a)(j,b). 

However, such assumption is necessary in (27), 

because P(i,,j)(a,b)=0 for (i,a)=(j,b), thus (28) is not a 

special case of (27). 

 

Proof: The probability that Eb
(j) occurs in step h of a 

cascade, h1, is equal to b
(j)(h)/b(j), and the 

probability that Eb
(j) is a primary event is equal to 

b(j)/b(j). This follows from the fact that intensities 

can be regarded as frequencies with which the 

respective events occur. Thus, (28) holds. Let us note 

that Ec
(k), 1kn, 1cm(k), can be cascade initiating 

events, each capable of causing event Eb
(j) in step h of 

a cascade initiated by itself, where h1 and (k,c)(j,b). 

Hence, in view of Formula 9 (with i and a replaced 

with k and c), (25) is a straightforward consequence 

of Lemma 2. In turn, the unconditional probability 

c(j,i)(b, a, h) is obtained by multiplying the conditional 

probability c(j,i)(b, a | h) by b
(j)(h)/b(j), yielding (26). 

Finally, (1) and (26) result in (27), which completes 

the proof.  

 

The results of Sections 3 through 5 yield the following 

algorithm for computing the root-cause probabilities 

of critical incidents: 

 

Algorithm 2 

1. Arrange the input data into the matrixes (0) and 

(1) defined respectively by (11) and Fig. 1 

2. Using (8), determine the matrices (h), h2 

3. Using (10), determine the matrices (h), h1 

defined by (12)  

4. Using (13) or (14), determine the matrix  defined 

by (15) 

5. For each Eb
(j) compute from (27) and (28) the matrix 

of root-cause probabilities C(j,i)(b,a), i=1,…,n, 

a=1,…,m(i), including the probability C(j,j)(b,b). If a 

more detailed analysis is needed, also compute from 

(25) and (26) the matrices of probabilities c(j,i)(b,a|h) 

and c(j,i)(b,a,h) for h1 
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6. A real-life example and the obtained 

numerical results 
 

Let us consider three following processes realized in 

a port area including oil and container terminals: 

O(1) – vessel traffic to and from the harbor, 

O(2) – crude oil transfer to or from tankers in the oil 

terminal, 

O(3) – truck traffic to and from the container terminal. 

The following events can occur in the individual 

processes: 

In O(1):   

E1
(1) – vessel collision with another vessel or a wharf, 

E2
(1) – spill of burning oil in the port waters,  

E3
(1) – vessel on fire, 

m(1)=3 

In O(2): 

E1
(2) – pipeline or hose damage and/or ignition, 

E2
(2) – onshore tank on fire, 

m(2)=2 

In O(3): 

E1
(3) – truck accident, 

m(3)=1 

Let us assume that the following cause-effect relations 

hold between the above events: 

E1
(1)  E2

(1), E2
(1)  E3

(1), E2
(1)  E1

(2) 

E1
(2)  E2

(2), E2
(2)  E1

(2), E1
(2)  E2

(1) 

E1
(3)  E1

(2) 

We also assume that only E1
(1) (vessel collision), E3

(1) 

(vessel on fire), E2
(2) (tank on fire) and E1

(3) (truck 

accident) can occur as primary events, i.e. 

(0) = [ 1
(1), 0, 3

(1);  0, 2
(2);  1

(3) ]. However, as 

follows from the previous assumption, E3
(1) (vessel on 

fire) and E2
(2) (tank on fire) can also be secondary 

events. 

 

The algorithms from Sections 4 and 5 applied to the 

above example produced the following results: 

INPUT DATA PRINTOUT: 

 

Number of processes: 3 

Maximum cascade grade: 6 (assumed value of hmax) 

Number of events in process 1: 3 

Number of events in process 2: 2 

Number of events in process 3: 1 

 

Matrix [j,b], j=1,...,n, b=1,...,m(j): 

0.5000  0.0000  0.5000  

0.0000  0.5000  

0.5000 

 

Matrix (1): 

0.0000  0.5000  0.0000    0.0000  0.0000    0.0000     

0.0000  0.0000  0.9000    0.4000  0.0000    0.0000     

0.0000  0.0000  0.0000    0.0000  0.0000    0.0000     

0.0000  0.9000  0.0000    0.0000  0.9000    0.0000     

0.0000  0.0000  0.0000    0.5000  0.0000    0.0000     

0.0000  0.0000  0.0000    0.8000  0.0000    0.0000     

 

RESULTS PRINTOUT; MATRICES OF 

INTENSITIES RELATED TO SUCCESSIVE 

STEPS OF CASCADES 

 

Matrix _1[j,b]: 

0.0000  0.2500  0.0000  

0.6500  0.0000  

0.0000 

 

Matrix _2[j,b]: 

0.0000  0.5850  0.2250  

0.1000  0.3600  

0.0000 

 

Matrix _3[j,b]: 

0.0000  0.0000  0.5265  

0.0000  0.0900  

0.0000 

 

Matrix _4[j,b]: 

0.0000 0.0263 0.0081  

0.0000 0.0130  

0.0000 

 

Matrix _5[j,b]: 

0.0000 0.0000 0.2490  

0.0000 0.0032  

0.0000 

 

 

 

 

Matrix _6[j,b]: 

0.0000 0.0012 0.0038  

0.0000 0.0005  

0.0000 

 

RESULTS PRINTOUT; RISK MATRICES FOR 

DIFFERENT TIME AND QUANTITY 

PARAMETERS 

 

Matrix R[j][b](2.00 years, 0 events): 

0.3679  0.1782  0.0486  

0.2231  0.1447  

0.3679 
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Each of the above values subtracted from 1 is the 

probability that at least one respective Eb
(j) (whether 

primary or not) occurs in a 2-year period. 

 

Matrix R[j][b](2.00 years, 1 event): 

0.3679  0.3073  0.1469  

0.3347  0.2797  

0.3679 

 

Matrix R[j][b](2.00 years, 2 events): 

0.1839  0.2651  0.2222  

0.2510  0.2704  

0.1839 

 

Matrix R[j][b](2.00 years, 3 events): 

0.0613  0.1524  0.2240  

0.1255  0.1742  

0.0613 

 

Matrix R[j][b](2.00 years, 4 events): 

0.0153  0.0657  0.1694  

0.0471  0.0842  

0.0153 

 

Matrix R[j][b](2.00 years, 5 events): 

0.0031  0.0227  0.1025  

0.0141  0.0326  

0.0031  

 

Matrix R[j][b](2.00 years, 6 events): 

0.0005  0.0065  0.0517  

0.0035  0.0105  

0.0005 

 

Matrix R[j][b](2.00 years, 7 events): 

0.0001  0.0016  0.0223  

0.0008  0.0029  

0.0001  

 

 

Matrix R[j][b](2.00 years, 8 events): 

0.0000  0.0003  0.0084  

0.0001  0.0007  

0.0000 

 

Matrix R[j][b](2.00 years, 9 events): 

0.0000  0.0001  0.0028  

0.0000  0.0002  

0.0000 

 

Matrix R[j][b](2.00 years, 10 events): 

0.0000  0.0000  0.0009  

0.0000  0.0000  

0.0000 

RESULTS PRINTOUT; MATRICES OF ROOT-

CAUSE PROBABILITIES FOR DIFFERENT 

RESULTING EVENTS 

 

C(1,1)(1,1)=1; E1
(1) (vessel collision) can only be a 

primary event 

 

Matrix C(1,i)(2,a) for the resulting event E2
(1) (burning 

spill): 

0.2899  0.0000  0.0000  

0.0000  0.2731  

0.4370 

 

Matrix C(1,i)(3,a) for the resulting event E3
(1) (vessel on 

fire): 

0.1567  0.0000  0.3306  

0.0000  0.1972  

0. 3155 

 

Matrix C(2,i)(1,a) for the resulting event E1
(2) (pipeline 

or hose damage): 

0.1333  0.0000  0.0000  

0.0000  0.3333  

0.5333 

Matrix C(2,i)(2,a) for the resulting event E2
(2) (onshore 

tank on fire): 

0.0965  0.0000  0.0000  

0.0000  0.5172  

0.3863 

 

C(3,3)(1,1)=1; E1
(3) (truck accident) can only be a 

primary event 

 

Remarks: 

1. For clarity of presentation, the intensities b
(j)(h), 

h0 are arranged in matrices rather than vectors (cf. 

formulas 11 and 12). 

2. For each j=1, 2, 3 and b=1,…,m(j), the root-cause 

probabilities C(j,i)(b,a) are arranged in a matrix with 3 

rows (i=1, 2, 3) and m(i) elements in row i 

(a=1,…,m(i)). 

3. The probability that the respective event occurs as 

primary one is underlined in each matrix C(j,i)(b,a). 
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