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Abstract 
 

The  stochastic processes theory provides concepts and theorems that allow to build probabilistic models  

concerning    incidents or (and) accidents in the Baltic Sea waters and ports.  A crucial role in construction of the 

models plays a Poisson process and its extensions; especially a nonhomogeneous Poisson process and 

nonhomogeneous compound Poisson process. The nonhomogeneous Poisson process allows to build models  of  

accidents number  in the sea and seaports. The  nonhomogeneous compound Poisson process  creates the 

possibility of constructing models describing the consequences of dangerous events and marine accidents. 

Moreover some procedures of  the model parameters  identification are presented in the paper. Estimation of 

model parameters was made based on data from reports of HELCOM (2014) and Interreg project Baltic LINes 

(2016). The expected number of accidents often depends on changing randomly external conditions. Thus it can 

be assumed that the parameter 𝜆  is a random variable. In the paper is assumed that this random variable has a   

gamma distribution 

 
1. Introduction 
 

This is the report from the task realized by the above 

research team within the framework of topics 4.1 and 

4.2 in the period from 1.02.2017 to 28.02.2019. A 

crucial role in construction of the models plays a 

Poisson process and its extensions especially a 

nonhomogeneous Poisson process and 

nonhomogeneous compound Poisson process. 

Moreover some procedures of  the model parameters  

identification are presented in the paper. Estimation of 

models parameters was made based the available data 

coming from reports of HELCOM [10], [11], Interreg 

project Baltic LINes [9] and  paper [7]. The models 

allow us to anticipate number of accidents on Baltic 

Sea waters and ports in future. The nonhomogeneous 

compound Poisson process as a model of the accidents 

consequences is also presented in this report. 

Theoretical results [1], [2], [3], [4], [5] were applied   

for anticipation of the fatalities number,  number of 

injured people and lost ships number in accidents at 

the Baltic Sea waters and ports in the specified time 

period.  

 

2.  Statistical analysis   

Annual report on shipping accidents in the Baltic Sea 

in 2013 HELCOM (2014) provides a lot of important 

information relevant to our problem.     From the date 

coming from report we can assess some parameters in 

our models. The Table 1 and Figure 1 show a total nu

mber of ships crossing in the Baltic Sea during 2006-

2013. The minimum number of ships crossing amoun

ted 376671 in 2006 and maximum was 430064 in 200

8.   From  2009   to   2013  the  number  of  ships  

crossing was in interval 342754 – 391699. Based on 

the data coming from [10] we have drawn up  the 

Figure 3  that shows a total  number of shipping 

accidents in the Baltic Sea  during 2006-2013. 

 According to the reports 149 ship accidents occurred 

in the Baltic Sea area in 2013, which is the highest 

recorded number in the last ten years (Figure 3) .  The 

number of accidents in the Baltic Sea has shown a 

slight increase in the last three years. Compared to 

2010 the total number of accidents increased by 17% 

in 2013. 
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Figure 1. Total number of ships crossing in the    

                Baltic Sea during 2006-2013  

 

Table 1. Number of ships crossing in the   Baltic Sea    

             during 2006-2013 

 

 
 

Figure 2. Total number of reporting ship accidents in   

the Baltic Sea 

 

 

 

 

Over recent years the number of maritime transport 

accidents increased, most of cargo ships, followed by 

passenger ships and tankers [9], [10], [11]. Human 

error is a major cause of accidents and is primarily 

related to unintentional action. However, 17% of the 

accidents occurred after intentional decisions against 

common rules and plans [9]. The number of collisions 

with other vessels and contacts to fixed or floating 

objects has south-western Baltic Sea is the main 

hotspot for these types of accidents. In the future, the 

offshore wind power sector will have high spatial 

requirements, especially when all safety distances are 

assigned to all components additional space is when 

ample safety distances are assigned to all components 

and additional space is reserved for the related service 

traffic. The expected increase in free traffic will also 

require more space, which should allow for a greater 

safety distance to maintain the commercial viability of 

increasing the safety distance to maintain commercial 

traffic [9]. 

Using date form the Table 1 and Figure 2 we can 

compute the indicators of shipping accidents intensity 

in relation to the ships crossing number, where 

 𝑁𝑆𝐶 −   number of ship crossing, 

𝑁𝐴 −     number of shipping accidents. 

 

Table 2. Indicators of shipping accidents intensity in  

the   Baltic Sea during 2006-2013 

    Year 
𝛾 =

𝑁𝑆𝐶

𝑁𝐴
 𝛼 =

𝑁𝐴

𝑁𝑆𝐶
 

2006 3275,40 0,000305 

2007 3495,32 0,000286 

2008 3130,84 0,000320 

2009 3258,06 0,000306 

2010 2698,85 0,000370 

2011 2739,15 0,000365 

2012 2596,97 0,000385 

2013 2351,62 0,000425 
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9 

2012 33193 20705

6 

66524 54627 22948 38435

9 

2013 31329 18277

0 

61193 57959 17141 35039

2 



Journal of Polish Safety and Reliability Association 

Summer Safety and Reliability Seminars, Volume 10, Number 1, 2019 

 

 

  

61 

 

Figure 3. Indicator  of shipping accidents intensity in 

relation to the ships crossing number 

 

 
Figure 4. Different types  of cruises in ships crossing 

in the Baltic Sea during 2006-2013 

 

 

Figure 5. [10] Types of accidents in the 2012 

 

 

Figure 6. [11]  Location of accidents in the Baltic 

Sea in  the Baltic Sea during 2004-2013 

 

 

3.  Homogenous Poisson Process    

A random process  {𝑋(𝑡):  𝑡 ≥ 0}  is said to be  a 

process with independent increments  if for all 

 𝑡1, … , 𝑡𝑛  such that 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛  the 

random variables  

𝑋(0), 𝑋(𝑡1) − 𝑋(0), 𝑋(𝑡2) − 𝑋(𝑡1),
…   𝑋(𝑡𝑛) − 𝑋(𝑡𝑛−1) 

are mutually independent. If the increments   𝑋(𝑠) −
𝑋(𝑡)  and  𝑋(𝑠 + ℎ) − 𝑋(𝑡 + ℎ)  for all  𝑡, 𝑠, ℎ > 0,
𝑠 > 𝑡 have the identical probability distributions then 

 {𝑋(𝑡):  𝑡 ≥ 0}  is called a process with the  stationary 

independent increments (SII). It is proved, that for the 

SII processes such that  𝑋(0) = 0  an expectation and 

a variance are  

𝐸[𝑋(𝑡)] = 𝑚1 𝑡,        𝑉[𝑋(𝑡)] = 𝜎1
2 𝑡,                                             

where 

𝑚1 = 𝐸[𝑋(1)]  and     𝜎1
2 = 𝑉[𝑋(1)].                                          

An example of a SII random process is a Poisson 

process.  

Definition 1. A stochastic process   {𝑋(𝑡);   𝑡 ≥ 0}  
taking values on  𝑆 = {0,1,2, … }, with the right 

continuous trajectories is said to be a Poisson process 

with parameter  𝜆 > 0   if:  

1. 𝑋(0) = 0, 
2. {X(t):  t ≥0}    is the process with the 

stationary independent increments, 
3. 𝐹𝑜𝑟  𝑎𝑙𝑙   𝑡 > 0, ℎ ≥ 0,    𝑃(𝑋(𝑡 + ℎ) −

𝑋(ℎ) = 𝑘) =
(𝜆 𝑡)𝑘

𝑘!
 𝑒−𝜆 𝑡 ,    𝑘 ∈ 𝑆.  

For  ℎ = 0  we get a first order distribution of the 

Poisson process:  

   𝑝𝑘(𝑡) = 𝑃(𝑋(𝑡) = 𝑘) =
(𝜆 𝑡)𝑘

𝑘 !
 𝑒−𝜆 𝑡 ,    𝑘 ∈ 𝑆.                                     

 For  𝑡 = 1  we obtain the Poisson distribution with 

parameter  𝜆. Hence  𝐸[𝑋(1)] = 𝜆  and  𝑉[𝑋(1)] = 𝜆. 
Therefore, we obtain the expectation and the variance 

of the Poisson process:  

   𝐸[𝑋(𝑡)] = 𝜆 𝑡,        𝑉[𝑋(𝑡)] = 𝜆 𝑡,    𝑡 ≥ 0.                                               

 For a fixed  𝑡  this formula determines the Poisson 

distribution with parameter  Λ = 𝜆 𝑡:  

      𝑝(𝑘) = 𝑃(𝑋 = 𝑘) =
(Λ)𝑘

𝑘 !
 𝑒−Λ,    𝑘 ∈ 𝑆.                                            

 Using this formula we have written a short procedure 

in a MATHEMATICA computer program which 

allows to calculate these probabilities. 

The calculation of the Poisson distribution  

 Print ["n=", n=4, " a=", a=3] 
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 For [ k=0, k ≤ n, k++, Print [" p [",k,"]", p[k] = 
𝑎𝑘

𝑘!
𝑒−𝑎 

// N] ],   Print [ " P(X ≤  n)= ", " P(X >  n)= ", 1 −
 ∑𝑛

𝑘=0  p[k]],   

From definition of the Poisson process, it follows that 

for  𝑠 > 𝑡 ≥ 0,  

𝐸[(𝑋(𝑠) − 𝑋(𝑡))𝑋(𝑡)] = 𝐸[𝑋(𝑠) − 𝑋(𝑡)]𝐸[𝑋(𝑡)] =

= 𝜆 (𝑠 − 𝑡) 𝜆 𝑡. 

On the other hand  

𝐸[(𝑋(𝑠) − 𝑋(𝑡))𝑋(𝑡)] =

= 𝐸[𝑋(𝑠) 𝑋(𝑡)] − (𝜆2 𝑡 + 𝜆 𝑡). 

Hence  

𝐸[𝑋(𝑠) 𝑋(𝑡)] = 𝜆2 𝑡 𝑠 + 𝜆 𝑡,    𝑠 > 𝑡 ≥ 0. 

In similar way we obtain  

𝐸[𝑋(𝑡) 𝑋(𝑠)] = 𝜆2 𝑡 𝑠 + 𝜆 𝑠,    𝑡 > 𝑠 ≥ 0. 

Finally the autocorrelation function of the Poisson 

process with parameter  𝜆  is given by  

𝑅(𝑡, 𝑠) = 𝐸[𝑋(𝑡) 𝑋(𝑠)] = 𝜆2 𝑡 𝑠 + 𝜆min{𝑡, 𝑠}.                                      

The auto-covariance function is  

𝐶(𝑡, 𝑠) = 𝜆 min{𝑡, 𝑠}.                                                              

 Note that  

𝑃(𝑋(𝑡 + ℎ) − 𝑋(𝑡) > 1) = 𝑃(𝑋(ℎ) > 1) = 

= 1 − [𝑝(0, ℎ) + 𝑝(1, ℎ)] = 

= 1 − [1 + 𝜆 ℎ]𝑒−𝜆 ℎ = 𝑜(ℎ), 

where  

    lim
ℎ→0

𝑜(ℎ)

ℎ
= 0. 

It means, that in a small time interval of a length h, an 

increment of the Poisson process is greater than 1, 

tends to zero faster than the length of interval. 

Theorem 1 [5]. Let  0 < 𝜏1, < 𝜏2, …  represent the 

consecutive instants of the state changes (jumps) in 

the Poisson process. The random variables  𝜗1 = 𝜏1,
𝜗2 = 𝜏2 − 𝜏1, …  denote the sojourn times of the states 

0, 1, …. .  For the Poisson process with parameter  𝜆  
the random variables  𝜗1, 𝜗2, … , 𝜗𝑛,   𝑛 = 2,3, …   are 

mutually independent and exponentially distributed 

with the identical  parameter  𝜆.  

 From the so-called theorem on adding of the random 

variables with the Poisson distributions it follows that  

the sum of  𝑛  independent Poisson processes with 

parameters  is a Poisson process with parameter   𝜆 =
 𝜆1 +  𝜆2 + ⋯ + 𝜆𝑛 . 

 

 

4. Nonhomogeneous Poisson process  
 

We will begin with a reminder of the concept of 

nonhomogeneous Poisson process.  

Let   

 𝜏0 = 𝜗0 = 0,     𝜏𝑛 = 𝜗1 + 𝜗2 + ⋯ + 𝜗𝑛, 𝑛 ∈ ℕ,  (1)                                                                       

where  𝜗1, 𝜗2, … , 𝜗𝑛 are positive independent random 

variables. Let 

𝜏∞ = lim
𝑛→∞

𝜏𝑛 = sup{𝜏𝑛:  𝑛 ∈ ℕ0}.                          (2)                                   

A stochastic process {𝑁(𝑡):  𝑡 ≥ 0}  defined by the 

formula  

   𝑁(𝑡) = sup{𝑛 ∈ ℕ0:  𝜏𝑛 ≤ 𝑡}                                 (3)                                                                           

is called a counting process corresponding to a 

random sequence {𝜏𝑛 : ∈ ℕ0}. 

Let   {𝑁(𝑡):  𝑡 ≥ 0}  be a stochastic process  taking 

values on  𝑆 = {0,1,2, … }, value of which represents 

the number of events in a time interval [0, 𝑡].  

Definition 2.  A counting process   {𝑁(𝑡):  𝑡 ≥ 0} is 

said to be nonhomogeneous  Poisson process  (NPP) 

with an intensity function     𝜆( 𝑡) ≥ 0,    𝑡 ≥ 0  ,   if 

1. 𝑃(𝑁(0) = 0) = 1                                      

(4) 

2.  The process   {N(t):  t ≥ 0}  is the 

stochastic process with independent 

increments,   the  right continuous and 

piecewise constant trajectories;    

3.                                                                (5)                                                                                                                                                                   

𝑃(𝑁(𝑡 + ℎ) − 𝑁(𝑡) = 𝑘) =

 
(∫ 𝜆(𝑥)𝑑𝑥

𝑡+ℎ
𝑡

)
𝑘

𝑘 !
𝑒− ∫ 𝜆(𝑥)𝑑𝑥

𝑡+ℎ
𝑡 ;                                                     

From this definition it follows that the one 

dimensional distribution of  NPP is given by the rule 

𝑃(𝑁(𝑡) = 𝑘) =   
(∫ 𝜆(𝑥)𝑑𝑥

𝑡

0
)

𝑘

𝑘 !
𝑒− ∫ 𝜆(𝑥)𝑑𝑥

𝑡

0 ,                (6)   

k=0, 1, 2….                 

The expectation and  variance of NPP are the 

functions 

Λ(𝑡) = 𝐸[𝑁(𝑡)] = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
 ,                               (7)                            

  V(t) = 𝑉[𝑁(𝑡)] = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
,    𝑡 ≥ 0.                (8)                                                                  

The corresponding standard deviation is  

D(t) = √𝑉[𝑁(𝑡)] = √∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
,    𝑡 ≥ 0.            (9)                                            

The expected value of the increment 𝑁(𝑡 + ℎ) −
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𝑁(𝑡)  is                                        

Δ(𝑡; ℎ) = 𝐸(𝑁(𝑡 + ℎ) − 𝑁(𝑡)) =                       (10)          

= ∫ 𝜆(𝑥)𝑑𝑥.
𝑡+ℎ

𝑡
                                                 

The corresponding to it standard deviation is  

 σ(𝑡; ℎ) = √∫ 𝜆(𝑥)𝑑𝑥
𝑡+ℎ

𝑡
                                     (11)                                     

The increments of the process are independent, but not 

necessarily stationary.  A nonhomogeneous Poisson 

process is a Markov process. 

5.  Nonhomogeneous compound Poisson  

Process 
 

Let   {𝑁(𝑡): 𝑡 ≥ 0}    be a Poisson process  with 

intensity    𝜆 > 0 and  𝑋1, 𝑋2, …      be sequence of 

independent and identically distributed (i.i.d.) random 

variables independent of     {𝑁(𝑡): 𝑡 ≥ 0}.  

Definition 3. A stochastic process 

𝑋(𝑡) = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡),   𝑡 ≥ 0                 (12)                                      

is called a   compound Poisson process (CPP).  

The probability discrete distribution function of  
{𝑁(𝑡): 𝑡 ≥ 0} at  k  in this case is  

𝑝(𝑘; 𝑡) = 𝑃(𝑁(𝑡) = 𝑘) =   
(𝜆 𝑡)𝑘

𝑘 !
𝑒−𝜆 𝑡,          

 𝑘 = 0,1,2, …   

We quote a well-known result. 

If  𝐸(𝑋1
2) < ∞, then  

𝐸[𝑋(𝑡)] = 𝜆 𝑡 𝐸(𝑋1),                                            (13)  

 𝑉[𝑋(𝑡)] =  𝜆 𝑡 𝐸(𝑋1
2) .                                        (14)                    

The concepts and facts can be generalized. We  

assume  now that    {𝑁(𝑡): 𝑡 ≥ 0}    is  a  

nonhomogeneous  Poisson process  (NPP) with an 

intensity function  𝜆( 𝑡), 𝑡 ≥ 0   ,   and  𝑋1, 𝑋2, …      
is  a sequence of the independent and identicaly 

distributed  random variables independent of      
{𝑁(𝑡): 𝑡 ≥ 0}.  

Definition 1. A stochastic process {𝑋(𝑡): 𝑡 ≥ 0} 

determines by the formula 

  𝑋(𝑡) = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡),   𝑡 ≥ 0                (15)                                    

is said to be  a  Nonhomogeneous Compound Poisson 

Process (NCPP). 

Proposition 1 [1].   If      {𝑁(𝑡): 𝑡 ≥ 0}    is  a  

Nonhomogeneous  Poisson Process  (NPP) with an 

intensity function  𝜆( 𝑡), 𝑡 ≥ 0 ,     then the 

cumulative distribution function  (CDF) of the 

nonhomogeneous compound Poisson process is given 

by the rule                     

𝐺(𝑥, 𝑡) = 𝐼[0,∞)(𝑥)𝑒−Λ( 𝑡) + ∑ 𝑝(𝑘; 𝑡)𝐹𝑋
(𝑘)(𝑥) ,∞

𝑘=1     (16)  

(where    𝐹𝑋
(𝑘)

(𝑥)  denotes the k-fold convolution of 

CDF of the random variables  𝑋𝑖, i=1,2,…  and 

𝑝(𝑘; 𝑡) =
(Λ( 𝑡))𝑘

𝑘 !
𝑒−Λ( 𝑡), 𝑡 ≥ 0, 𝑘 = 0,1, … ,      (17)                                               

Λ( 𝑡) = 𝐸[𝑁(𝑡)] = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
                              (18)                              

is discrete probability distribution of  NPP. 

Conclusion 1 [6]. If the random variables  , i=1,2,…  

are absolutely continuous with density function  

𝑓𝑋(∙),   then the density of NCPP is given by the rule  

𝑔(𝑥, 𝑡) = ∑ 𝑝(𝑘; 𝑡)𝑓𝑋
(𝑘)

(𝑥)∞
𝑘=1 , 𝑥 ≠ 0, 𝑡 > 0,   (19)                                      

where  𝑓𝑋
(𝑘)

(𝑥) denotes k –fold convolution of the 

density function 𝑓𝑋(𝑥).   

Example 1. Let the random variables  𝑋𝑖, i=1,2,…  

have normal distrbution  𝑁(𝑚, 𝜎). It means that a 

probabilility density function of   𝑋𝑖 = 𝑋 is  

𝑓𝑋(𝑥) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝑚)2

2 𝜎2 , 𝜎 > 0, 𝑚 ∈ (−∞, ∞),   (20)  

𝑥 ∈ (−∞, ∞)                                        

The sum  𝑋1 + 𝑋2 + ⋯ + 𝑋𝑘 has  normal distribution  

𝑁(𝑘𝑚, √𝑘𝜎). Hence it’s density is k –fold 

convolution of the density function 𝑓𝑋(𝑥)   given by  

𝑓𝑋
(𝑘)(𝑥) =

1

√2𝜋 √𝑘𝜎
𝑒

−
(𝑥−𝑘𝑚)2

2 𝑘 𝜎2                                  (21)                                        

Therefore the density of NCPP  given by  (19) takes 

the form 

𝑔(𝑥, 𝑡) =
1

√2𝜋 𝜎
∑

(Λ( 𝑡))𝑘

√𝑘𝑘 !
𝑒−Λ( 𝑡)𝑒

−
(𝑥−𝑘𝑚)2

2 𝑘 𝜎2∞
𝑘=1 , 𝑥 ≠ 0,

𝑡 > 0,                                                                    (22) 

 
Figure 6. The density functions of CPP  for λ=0.4,       

       m=10.2,  σ=3.2    and     t=5, t=10 

Conclusion 2. [6]. If the random variables  𝑋𝑖, 

i=1,2,…  have a discrete probability function  
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𝑝𝑋(𝑥) = 𝑃(𝑋 = 𝑥), 𝑥 ∈ 𝑆 ,  then the discrete 

probability distribution of NCPP is given by the rule  

𝑔(𝑥, 𝑡) = ∑ 𝑝(𝑘; 𝑡)𝑝𝑋
(𝑘)

(𝑥)∞
𝑘=1 , 𝑡 > 0.               (23) 

Example  2  [6].     Assume that random variables 

𝑋𝑖 , 𝑖 = 1,2, …       have a Poisson  distribution with 

parameter 𝜇 > 0: 

𝑝𝑋(𝑥) =
𝜇𝑥

𝑥! 
𝑒−𝜇 ,   𝑥 = 0,1,2, … . 

k –fold convolution of this discrete distribution 

functions is 

𝑝𝑋
(𝑘)

(𝑥) =
(𝑘𝜇)𝑥

𝑥! 
𝑒−𝑘𝜇 , 𝑥 = 0,1,2, …   . 

Then the rule (18) takes the form 

  𝑔(𝑥, 𝑡) = ∑
(Λ( 𝑡))

𝑘

𝑘 !
𝑒−Λ( 𝑡)∞

𝑘=1  
(𝑘𝜇)𝑥

𝑥! 
𝑒−𝑘𝜇 ,         (24) 

 𝑥 = 0,1,2, …   , 𝑡 > 0.                       

Assuming Λ( 𝑡) = 𝜆 𝑡,   𝑡 = 15,   𝜆 = 0.4,   𝜇 = 0.1 

we have computed probabilties (24) The results  are 

shown in Table 3.     

Table 3. The values of the function (23) 

x 0 1 2 3 

g(x,15) 0,5624 0,3067 0,0986 0,0239 

x 4 5 6 7 

g(x,15) 0,0048 0,0008 0,0001 0,00002 

 

Proposition 2 [6].  Let  {𝑋(𝑡): 𝑡 ≥ 0}  be   a  

nonhomogeneous compound Poisson process 

(NCPP). 

If  𝐸(𝑋1
2) < ∞, then  

𝐸[𝑋(𝑡)] = 𝛬( 𝑡)𝐸(𝑋1),                                        (25)                     

𝑉[𝑋(𝑡)] =   Λ( 𝑡) 𝐸(𝑋1
2).                                     (26) 

 

6. Model of accidents number in Baltic Sea 

waters and ports 
 

We will quote information from the paper [6], which 

is necessary for further consideration. Some mistakes 

in formulas  (15) and (16) are noticed by author. Now 

this mistakes are corrected.    Assume that a stochastic 

process     {𝑁(𝑡);   𝑡 ≥ 0}   taking values on  𝑆 =
{0,1,2, … },  represents the number of accidents  in the 

Baltic Sea and  Seaports in a time interval [0, 𝑡). Due 

to the nature of these events, pre-assumption that it is 

a nonhomogeneous Poisson process with some 

parameter  𝜆(𝑡) > 0 , seems to be justified.  The 

expected value of increment of this process is given 

by  (10) while its one dimensional distribution is 

determined by (5). We can use practically these rules 

if will know the intensity function 𝜆(𝑡) > 0. To define 

this function  we utilize information presented in [5], 

[9], [10, 11]  The statistical analysis of the data shows 

that the  intensity  function 𝜆(𝑡) can  be approximated 

by the linear function   𝜆(𝑡) = 𝑎𝑡 + 𝑏. 

 

6.1. Estimation of the models parameters 
 

Dividing the number of accidents in each year, by 365 

or 366 we get the intensity in units of [1 / day]. The 

results are shown in Table 4.  

 We  approximate the empirical intensity by a linear 

regression function 𝑦 = 𝑎𝑥 + 𝑏  that  satisfied 

condition 

𝑆(𝑎, 𝑏) =   ∑  [𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏)]2

𝑛

𝑖=1

 → 𝑚𝑖𝑛 

Recall, that solution of above optimization problem 

leads to finding parameters  𝑎  and   𝑏. The parameters   

are   given by the rules: 

𝑎 =
𝜇11

𝜇20
 ,         𝑏 = 𝑚01 − 𝑎𝑚10                          (26)                                                                                                 

�̅� = 𝑚10 =
1

𝑛
 ∑ 𝑥𝑖

𝑛
𝑖=1 ,      �̅� = 𝑚01 =

1

𝑛
 ∑ 𝑦𝑖 ,𝑛

𝑖=1    

 𝑚11 =
1

𝑛
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1  ,        𝜇11 = 𝑚11 − 𝑚10 𝑚01 ,    

 𝑚20 =
1

𝑛
 ∑ 𝑥𝑖

2𝑛
𝑖=1 ,           𝜇20 =   𝑚20 − 𝑚10

2. 

Applaying the rules  (26) for the data from Table 2 and 

using Excel system we obtain 

 𝑎 = 0,000014756,       𝑏 =  0,337925722.       (27)                                                  

The linear intensity of accidents is 

𝜆(𝑥) = 0,000014756 𝑥 + 0,337925722 ,  𝑥 ≥ 0       (28)                                   

From (7) we have 

Λ(𝑡) = ∫ (0,000014756 𝑥 + 0,337925722)𝑑𝑥.
𝑡

0

 

Hence we obtain 

Λ(𝑡) = 0,0000073782 𝑡2 +  0,337925722 𝑡,    (29) 

𝑡 ≥ 0.                                                                                                

Therefore the one dimensional distribution of  NPP is  

𝑃(𝑁(𝑡) = 𝑘) =   
(𝛬(𝑡))

𝑘

𝑘 !
𝑒−𝛬(𝑡),   𝑘 = 0,1,2, … ,  (30)                                           

where    Λ(𝑡)  is given by (29). 

Finnally we can say that the model of the accident 

number in the Baltic Sea waters and port is the 

nonhomogeneous Poisson process with the parameter 
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Λ(𝑡),    𝑡 ≥ 0      determines by (29).  

Table 4. The empirical intensity of accidents in the     

Baltic Sea  waters  and ports 

Year Interval  Center 

of inter. 

Numb.

of acc. 

Intensity    

[1/day] 

2004 [0, 366) 183 133 0,3633 

2005 [366,731) 731,5 146 0,4000 

2006 [731, 1096) 913,5 115 0,3150 

2007 [1096, 1461) 1278,5 118 0,3233 

2008 [1461, 1827) 1644 138 0,3770 

2009 [1827, 2192) 2009,5 115 0,3150 

2010 [2192, 2557) 2374,5 127 0,3479 

2011 [2557, 2922) 2374,5 143 0,3917 

2012 [2922, 3288) 3105 148 0,4043 

2013 [3288, 3653) 3470,5 149 0,4082 

 

7. Anticipation of accident number   
 

From (5) and ( 10) we  get 

𝑃(𝑁(𝑡 + ℎ) − 𝑁(𝑡) = 𝑘) =
𝛥(𝑡;ℎ)

𝑘 !
𝑒−[𝛥(𝑡;ℎ)].       (31)                                               

It  means that we can anticipate number of accidents 

at any time interval with a length of h. The expected 

value of the increment 𝑁(𝑡 + ℎ) − 𝑁(𝑡) is defined by 

(10). For the function 

𝛬(𝑡) = 𝑎
𝑡2

2
+ 𝑏 𝑡 

 we obtain the expeted value of the accidents at  time 

interval   [𝑡, 𝑡 + ℎ) 

Δ(𝑡; ℎ) = ℎ( 
𝑎 ℎ

2
+ 𝑏 + 𝑎 𝑡) ,                               (32 )                      

The corresponding standard deviation is  

σ(𝑡; ℎ) = √ℎ( 
𝑎 ℎ

2
+ 𝑏 + 𝑎 𝑡) .                            (33)                                       

Example 3. [6]. We want to predict the number of 

accidents from  June 1 of 2017 to August 30 of 2017. 

We also want to calculate the probability of a given 

number of accidents. 

First we have to determine parameters   𝑡  and   ℎ .  As 

extention  of table 2 on year 2017 we obtain an interval    

[4749, 5114). 

From January 1 of 2017 to June 1 of 2017 have pased 

151 days. Hence  𝑡 = 4749 + 151 = 4900. 

From June 1 to  August 31 have passed  ℎ =92  days. 

For these parameters using  (32) and (33)   we obtain 

Δ(𝑡; ℎ) = 34.45,      σ(𝑡; ℎ) = 5.87 

This means that the average predicted number of 

accidents between  June 1, 2017 and  August 31, 2017 

is about 34 with a standard deviation of about 6.  

Probability that the number of accidents at the Baltic 

Sea waters and ports in considered interval of time is 

not greater than  d=45 and not less that c=25 is 

𝑃25≤𝑘≤45 = 𝑃(25 ≤ 𝑁(𝑡 + ℎ) − 𝑁(𝑡) ≤ 45)

= ∑
34.45𝑘

𝑘 !
𝑒−34.45

𝑘=45

𝑘=25
; 

Applying approximation  by normal distribution we 

get 

𝑃25≤𝑘≤45 = 𝛷 (
45 − 34.45

5.87
) − 𝛷 (

25 − 34.45

5.87
) = 

= 𝛷(1.7972) − 𝛷(−1.6098) = 0.910. 

 

8. Models describing number of accidents at 

the Baltic  ports 
 

The article [6] reasoned that, the intensity function of 

the  process  𝑁1(t)   describing  number of accidents 

at the Baltic ports is given by 

𝜆1(𝑥) = 0,44 × 𝜆(𝑥).                                     (35)       

Therefore 

𝜆1(𝑥) = 0,000006492  𝑥 + 0,148687317         (36)                                                        

The expected value and  corresponding standard 

deviation of the accidents at  time interval   [𝑡, 𝑡 + ℎ) 

are 

Δ1(𝑡; ℎ) = 𝑎1  
ℎ2

2
+ 𝑏1 ℎ + 2𝑎1𝑡 ℎ ,                      (37)                                                

σ1(𝑡; ℎ) = √𝑎1
 ℎ2

2
+ 𝑏1ℎ + 2 𝑎1 𝑡  .                    ( 38)                                              

Example 4  [6].  We want to anticipate the number of 

accidents in the ports  of Baltic Sea from  June 1 , 2017 

to August  31, 2017. We calculate the probability of a 

given number of that kind of accidents. Parameters  𝑡   

and  ℎ are the same like in example 

l              but                𝑎1 = 0,000006492,     𝑏1 =
  0,148687317.  From  (37) and (38) we obtain the 

expected value and standard deviation of  accidents  in  

ports of Baltic Sea and in the time period  [𝑡, 𝑡 + ℎ) . 

Δ1(𝑡; ℎ) =13,77,     𝜎1(𝑡; ℎ) = 3,71 

For example, probability that the number of accidents  

in the Baltic Sea Ports in  this time period is not greater 

than  d=20 and not less that c=10 is approximately 
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equal to 

  𝑃10≤𝑘≤20 = 𝛷 (
20−13,77

3,71
) − 𝛷 (

10−13,77

3,71
) =    =

𝛷(1,68) − 𝛷(−1,02) = 0.799. 

 

9.  Anticipation of the accident consequences 
 

Let  𝑋𝑖 ,   𝑖 = 1,2, … , 𝑁(𝑡)  denotes number of 

fatalities  or  injuried poeople or  ships lost in i-th 

accident. We suppose that the random variables 

𝑋𝑖 , 𝑖 = 1,2, … have the identical Poisson distribution 

with parameters 𝐸(𝑋𝑖) = 𝑉(𝑋𝑖) = 𝜇,   𝑖 =
1,2, … , 𝑁(𝑡).   

The predicted number of fatalities in the time interval 

[𝑡, 𝑡 + ℎ) is described by the expectation of the 

increment   𝑋(𝑡 + ℎ) − 𝑋(𝑡) . 

Recall that the expected value  and standard deviation 

of the accidents number in the time interval   [𝑡, 𝑡 + ℎ) 

are given by (10) and (11).  

To calculate the expected number of fatalities in the 

considered time interval we apply  

Corollary 1 [6].  Let  {𝑋(𝑡 + ℎ) − 𝑋(𝑡): 𝑡 ≥ 0}   be   

an inreament of  nonhomogeneous compound Poisson 

process (NCPP). 

If  𝐸(𝑋1
2) < ∞, then  

𝐸[𝑋(𝑡 + ℎ) − 𝑋(𝑡)] = Δ(𝑡; ℎ) 𝐸(𝑋1),                (39)                                                                                       

𝑉[𝑋(𝑡 + ℎ) − 𝑋(𝑡)] =   Δ(𝑡; ℎ) 𝐸(𝑋1
2),              (40)                                

where   

Δ(𝑡; ℎ) = ∫ 𝜆(𝑥)𝑑𝑥
𝑡+ℎ

𝑡
.                                       (41)                  

Proposition 1. [1].  If {𝑁(𝑡): 𝑡 ≥ 0}    is  a  

nonhomogeneous  Poisson process  (NPP)  with an 

intensity function  𝜆( 𝑡), 𝑡 ≥ 0  ,   then cumulative 

distribution function  (CDF) of the nonhomogeneous 

compound Poisson process (NCPP) is given by the 

rule 

𝐺(𝑥, 𝑡) = 𝐼[0,∞)(𝑥)𝑒−Λ( 𝑡) + ∑ 𝑝(𝑘; 𝑡)𝐹𝑋
(𝑘)

(𝑥)∞
𝑘=1 ,     (42)                                                                                              

 where  𝐹𝑋
(𝑘)

(𝑥)   denotes the k-fold convolution of 

CDF of the random variables  𝑋𝑖, i=1,2,…  and 

𝑝(𝑘; 𝑡) =
(Λ( 𝑡))𝑘

𝑘 !
𝑒−Λ( 𝑡), 𝑡 ≥ 0, 𝑘 = 0,1, … ,      (43)                                                            

Λ( 𝑡) = 𝐸[𝑁(𝑡)]  = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
                          (44)                                                  

Corollary 2  [6]. If the random variables  𝑋𝑖, i=1,2,…  

have  a discrete probability function  𝑝𝑋(𝑥) =
𝑃(𝑋 = 𝑥), 𝑥 ∈ 𝑆 ,  then the  discrete distribution 

function of NCPP is given by the rule  

𝑔(𝑥, 𝑡) = ∑ 𝑝(𝑘; 𝑡)𝑝𝑋
(𝑘)

(𝑥)∞
𝑘=1 ,   𝑡 > 0                (45)               

where  𝑝𝑋
(𝑘)

(𝑥) denotes k –fold convolution of the 

discrete probability   distribution  𝑝𝑋(𝑥), 𝑥 =
0,1,2, …   of the random variable 𝑋. 

Example 4. We want to anticipate the number of 

fatalities in accidents in the Baltic Sea waters and 

ports from June 1, 2017 to August 31, 2017 

For the data from  Example 3 using  (39) and (40) we 

obtain the expected value of  fatalities  in the time  

interval [𝑡, 𝑡 + ℎ): 

𝑬𝑭𝑵= Δ(𝑡; ℎ) × 𝜇                                                (46)                        

and  the  standard deviation 

𝑫𝑭𝑵 = √Δ(𝑡; ℎ) × (𝜇 + 𝜇2)  .                            (47)                                    

We know that the average of the sample is an unbiased 

estimator of the expected value. Unfortunately, 

reliable data are not available for the moment. We 

roughly estimate this parameter using data   presented 

in EMSA reports [12], [13] and paper [7]. These data 

are only partially consistent with the previous ones. 

The approximate estimate of the parameter 𝜇 is the 

number 

𝝁 = 𝟎, 𝟎𝟓𝟔 . 

Applying (46) and (47) we get 

𝑬𝑭𝑵 = 𝟏, 𝟗𝟐𝟗𝟐   and     𝑫𝑭𝑵 = 𝟏, 𝟒𝟐𝟕𝟑 . 

In this case, the formula (19) takes the form 

𝑔(𝑥, 𝑡; ℎ) = ∑
Δ(𝑡;ℎ)𝑘

𝑘 !
𝑒−Δ(𝑡;ℎ)∞

𝑘=1  
(𝑘𝜇)𝑥

𝑥! 
𝑒−𝑘𝜇 ,     (48)        

𝑥 = 0,1,2, …   , 𝑡 > 0.            

For 𝑡 = 4900,   ℎ = 92  we have Δ(𝑡; ℎ) = 34.45. 

Using  (43), for   𝜇 = 0,056   we obtain a predicted 

dystribution of fatalities in accidents at the Baltic Sea 

and   ports  from  June 1 , 2017 to August  31, 2017.  

Table 5  and figure 6 show this distribution. 

We can see that the most probable numbers of 

fatalities are 1 and 2. The probability that there will be 

no fatal accident is only about 15%. 

Table 5. Distribution of fatalities number 

x 0 1 2 3 

g(x) 0,1531 0,2794 0,2627 0,1693 

x 4 5 6 7 

g(x) 0,0841 0,0343 0,0119 0,0037 
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Figure 6.  Distribution of fatalities number in single  

accident 

Example 5 [6]. The predicted number of injured 

person in accidents in the Baltic Sea and Ports from 

June 1, 2017 to August 31, 2017 we will get in a 

similar way. In this case  

𝝁 = 𝟎, 𝟐𝟐𝟒. 

The  expected value and  standard deviation of injured 

people number at considered period are  

𝑬𝑵𝑰= 34,45 ×  0,224 = 7,7168 

𝑫𝑵𝑰 = √34,45 × (0,224 + 0,2242)= 3,0733 

 

Table 6. Distribution of  injured person  number 

in a single accident 

x 0 1 2 3 

g(x) 0,00099 0,00613 0,01959 0,04317 

     

x 4 5 6 7 

g(x) 0,07358 0,10332 0,12431 0,13164 

x 8 9 10 11 

g(x) 0,12507 0,1082 0,0862 0,0638 

x 12 13 14 15 

g(x) 0,04426 0,02891 0,0179 0,01053 

x 16 17 18 19 

g(x) 0,00592 0,00319 0,0016 0,0008 

 

Figure 7. Distribution of  injured person  number in a 

single accident 

 

Example  6  [6].  For the ships lost number in accidents 

in the Baltic Sea and  Sea Ports  in considered time, 

interval parameter 𝜇 is 

𝝁 = 𝟎, 𝟎𝟏𝟔 . 

For the data from Example 3, using (39) and (40) we 

obtain an expected value and standard  deviation of 

the ships lost number in considered period.  

𝑬𝑰𝑵= 34,45 ×  0,016 = 0,5512 

𝑫𝑰𝑵 = √34,45 × (0,016 + 0,0162)= 0,74834 

Equation (33) allows to compute predicted 

distribution of the ship lost  number. The results are 

shown in Table 7 and  Figure  8. 

 

Table 7. Distribution of  ships lost number 

x 0 1 2 3 

g(x) 0,57879 0,31396 0,08766 0,01677 

x 4 5 6 7 

g(x) 0,00247 0,00029 0,00003 0,0000003 

 

 

Figure 8.  Distribution of the ships lost number in a 

single accident 
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10.   Random parameter in Poisson model 
 

The expected number of accidents often depends on 

changing randomly external conditions. Thus it can be 

assumed that the parameter 𝜆  is a random variable. 

We assume that this random variable has a   gamma 

distribution with a density 

 

𝑓(𝑢) = {
𝛼𝜈

Γ(𝜈)
𝑢𝜈−1𝑒−𝛼 𝑢     for   u > 0

0                               for   u ≤ 0
                 (49)                         

where  𝛼 > 0,      𝜈 > 1. 
 

Suppose  that a condition distribution of the accidents  

number given 𝜆 has a Poisson distribution 

𝑃(𝑁(𝑡) = 𝑘|  𝜆) =
(𝜆 𝑡)𝑘

𝑘 !
 𝑒−𝜆 𝑡,     𝑘 = 0 1 ,2 , …  (50)                                 

From the total probability low we obtain 

unconditional one-dimensional distribution   

of the process 

 

 𝑃(𝑁(𝑡) = 𝑘) = ∫
(𝑢𝑡)𝑘𝑒−𝑢𝑡

𝑘!

∞

0
 

𝛼𝜈

𝛤(𝜈)
𝑢𝜈−1𝑒−𝛼 𝑢𝑑𝑢,          (51) 

𝑘 = 1,2, …   
                                                                                  

For 0k  we obtain 

  𝑃(𝑁(𝑡) = 0) = 𝑃(𝜗1 > 𝑡) = (
𝛼

𝛼+𝑡
)

𝜈
.         

 

Finally  for    𝑘 =  1 ,2 , …    we   obtain  [2] 

 

𝑃(𝑁(𝑡) = 𝑘)  =  
𝜈(𝜈+1)…(𝜈+𝑘−1)

𝑘!
(

𝑡

𝑡+𝛼
)

𝑘
(

𝛼

𝑡+𝛼
)

𝜈
,  (52) 

 

𝑘 =  1 ,2 , … , 𝜈 > 1, 𝜆 > 0.       
                                 
The random variable  T=𝜗1     denotes   a  lifetime of 

an object. The function 

𝑅(𝑡) = 𝑃(𝑇 > 𝑡) = (
𝛼

𝛼+𝑡
)

𝜈
, 𝑡 ≥ 0                     (53)                                     

is called a survival function.  

The cumulative distribution function   (CDF)  of  the 

object lifetime  has the form                                         

𝐹(𝑡) = 1 − (
𝛼

𝛼+𝑡
)

𝜈
, 𝑡 ≥ 0.                                 (54) 

and corresponding to CDF a probability density 

function is 

𝑓(𝑡) =
𝜈 𝛼𝜈

(𝛼+𝑡)𝜈+1  , 𝑡 ≥ 0.                                         (55) 

An expected value of the random variable   T 

𝐸(𝑇) = ∫ (
𝛼

𝛼+𝑡
)

𝜈
𝑑𝑡 =

𝛼

𝜈−1
.        

∞

0
                         (56)                                     

The second moment is 

𝐸(𝑇2) = 2 ∫ 𝑡 (
𝛼

𝛼+𝑡
)

𝜈
𝑑𝑡 =

2𝛼2

(𝜈−1)(𝜈−2)

∞

0
 .             (57)                                   

The variance is 

𝑉(𝑇) =    
𝛼2𝜈

(𝜈−1)2(𝜈−2)
.                                            (58)                                                

It should be mentioned that the variance there exists if  

𝜈 > 2. 
The (𝑇)    standard deviation takes the form  

𝜎 = 𝐸(𝑇)√
𝜈

𝜈−2
                                                        (59)     

                                                    

10.1  Procedure of parameters identification 
 

Notice that these values depend on the two 

parameters: both  𝛼 and 𝜈. There is natural question, 

how to determine these parameters. One method of 

estimating the unknown parameters is the so called the 

method of moments. In this method the unknown 

parameters are replaced by their statistical estimates 

derived from the results of observation. In this case, 

the expected value is replaced by the average of the 

sample  and the second moment of the random 

variable is replaced by the second moment of the 

sample.  Solving the corresponding system of 

equations we obtain the unknown parameters of the 

distribution.  

An estimate of the expectation    E(T)   is mean: 

 

�̅� =
𝑥1+𝑥2+⋯+𝑥𝑛

𝑛
                                                   (60)    

and the estimate of is   second moment  from the 

sample 

 

𝑥2̅̅ ̅ =
𝑥1

2+⋯+𝑥𝑛
2

𝑛
.                                                  (61) 

 

Applying the method of moments we obtain the 

system of equations 

 

�̅� =
𝛼

𝜈−1
,      𝑥2̅̅ ̅ =

2𝛼2

(𝜈−1)(𝜈−2)
 .                            (62)                     

 

The solution is given by the rules 

 

𝜈 = 1 −
𝑥2̅̅̅̅

(�̅�)2−  𝑥2̅̅̅̅ ,      𝛼 = �̅� (𝜈 − 1).              (63)    

                        

10.2  Illustrative example 
 

We compute the values of parameters 𝛼 and 𝜈 for    

�̅� = 11,677,     𝑥2 =  2454,2018   
Using the equation (53) we obtain 

𝜈 = 4     𝛼 = 35,03.        
Applying (62) and (63)  is written brief procedure in  

MATHEMATICA computer program for calculating 

probabilities in the considered distribution. 

The procedure of calculation of the number dangerous 

accidents distribution in this case for 𝑡 =
60 [𝑑𝑎𝑦]     is of the form : 
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As a result of these calculations for  n= 6 ,  α= 35.03,  

t= 60 , ν= 4  we obtained  

 p[ 0 ]= 0.0184237,     p[ 1 ]= 0.0465442,    

p[ 2 ]= 0.0734908,      p[ 3 ]= 0.0928305 

p[ 4 ]= 0.102602,       p[ 5 ]= 0.103682,    

p[ 6 ]= 0.0982252, 

 P(X ≤ n) = 0.5357,    P(X > n) = 0.4643 .         
We can notice that the most probable number of 

accidents in a time interval length of 60 days is 5, but 

the probability of this event is 0.1037. The number of 

accidents is not greater than 6 with probability   

0.5357.  Probability that there will be no accidents   is 

equal to 0.0184 whereas in the Poisson model, it is 

0.0058. It is a three times more. 

 

11.  Conclusions 
 

The  random processes theory deliver concepts and 

theorems that enable to construct   stochastic models  

concerning accidents. The counting processes and  

processes with independent increments are the most  

appropriate for modelling  number of the accidents 

number in Baltic Sea waters  and   ports in specified 

period of  time. A crucial role in the models 

construction  plays a nonhomogeneous Poisson 

process and  nonhomogeneous compound Poisson 

process. Based on the nonhomogeneous Poisson 

process the models of accidents number in the Baltic 

Sea Waters and Seaports have been constructed. 

Moreover, some procedures of the model parameters 

identification are presented in the paper. Estimation of 

model parameters was made based on data from 

reports of HELCOM (2014) and Interreg project 

Baltic LINes (2016).  

The nonhomogeneous  compound Poisson process as 

a model of the accidents  consequences is  also 

presented  in this paper. Theoretical results are applied   

for anticipation the number of fatalities, number 

injured people and number of lost ships  in accidents 

at the Baltic Sea waters and  ports  in specified period 

of  time.  

The expected number of accidents often depends on 

changing randomly external conditions. Thus it can be 

assumed that the parameter 𝜆  is a random variable. In 

the paper is assumed that this random variable has a   

gamma distribution. 
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