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Abstract 
 

The climate-weather change process for the maritime ferry operating at Port Gdynia and at Baltic Sea open 

waters between Gdynia bay and Karlskrona bay is considered and its states are defined. Further, the semi-

Markov process is defined and used to create a general probabilistic model of the climate-weather change 

process for the maritime ferry operating at considered areas. 

 

1. Introduction 
 

As shown in [20], the climate-weather change 

processes for the real critical infrastructures 

operating areas could be treat as the semi-Markov 

process with discrete operation states defined by the 

mainly climate-weather hazards which have 

influence on the considered critical infrastructures 

operating areas. In this article, we will define 

parameters of the climate-weather change process for 

the maritime ferry operating at Port Gdynia and at 

Baltic Sea open waters between Gdynia bay and 

Karlskrona bay using the bases from [20]. All 

analyses included in this article could be found in 

[5]. 

 

 

 

 

 

 

2. Climate-Weather Change Process for 

Maritime Ferry Operation Area 
 

2.1. Description of Maritime Ferry 
 

The maritime ferry is a passenger Ro-Ro ship 

operating at the Baltic Sea between Gdynia and 

Karlskrona ports on regular everyday line. The 

mentioned earlier operated area of the maritime ferry 

could be divided into four different areas: Gdynia 

Port, Baltic Sea restricted waters, Baltic Sea open 

waters, Karlskrona Port. The detailed maritime ferry 

route is illustrated in Figure 1. More information 

about the maritime ferry, its assets and 

interconnections between them could be found in [8]. 

In following subsections, we will analyze the 

climate-weather change process of the maritime ferry 

operating at Port Gdynia (Point 1 in Figure 1) and at 

Baltic Sea open waters between Gdynia bay and 

Karlskrona bay (Points 3-6 in Figure 1). In points  

1-7 marked in the above figure were obtained the 

climate-weather data. 
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Point 3. Maritime Ferry 

Operating at Baltic Sea 

Open Waters (Point 1458) 

Point 5. Maritime Ferry 

Operating at Baltic Sea 

Open Waters (Point 1389) Point 4. Maritime Ferry 

Operating at Baltic Sea 

Open Waters (Point 1422) 

Point 2. Maritime Ferry 

Operating at Baltic Sea 

Restricted Waters 

Point 1. Maritime Ferry 

Operating at Gdynia Port Area 

Point 6. Maritime Ferry 

Operating at Baltic Sea 

Open Waters (Point 1353) 

Point 7. Maritime Ferry Operating at 

Karlskrona Port Area 

 
 

Figure 1. Maritime ferry route between Karlskrona and Gdynia ports 

 

2.2. Defining parameters of climate-weather 

change process for Maritime Ferry operating 

at Gdynia Port 
 

We distinguish a = 2 parameters which mainly 

describe the climate-weather states of the maritime 

ferry operating at Gdynia Port. These parameters are: 

w1 – the sea level measured in centimeters and w2 – 

the wind speed measured in meters per second. Next, 

we assume that the possible values of the parameters 

in this area can belong respectively to the intervals  

)620 415,1 w  and )33,02 w  and according to 

the data about ranges of hazard parameters in [9]. 

Moreover, the parameter w1 values interval 

<415, 620) is divided into n1 = 4 disjoint 

subintervals: 

 

   <415, 450), <450, 500), <500, 550), <550, 620) 

 

and the parameter w2 values interval <0, 33) into  

n2 = 2 disjoint subintervals: 

 

   <0, 17.2), <17.2, 33). 

 

Hence, the vector (w1, w2) which describes the 

climate-weather states can take values from the set of 

the following a = 2 dimensional space points of the 

Descartes products: 

 

   <415, 450) x <0, 17.2), <450, 500) x <0, 17.2), 

   <500, 550) x <0, 17.2), <550, 620) x <0, 17.2), 

   <415, 450) x <17.2, 33),<450, 500) x <17.2, 33), 

   <500, 550) x <17.2, 33), 

   <550, 620) x <17.2, 33). 

 

We call these products the climate-weather states of 

the climate-weather change process. If all of them 

are sensible then they are numerated from 1  

up to the value 82421  nnw  and marked by  

c1, c2, …, c8. When some of them are not possible to 

happen (are not sensible), then according to an expert 

opinion, we can omit them and their numeration can 

be changed. 

Hence, based on the expert opinion, there are 

distinguished the following w = 8 climate-weather 

states: 
– the climate-weather state c1 – the sea level from 
415 cm up to 450 cm and the wind speed from 0 m/s 
up to 17.2 m/s; 
 – the climate-weather state c2 – the sea level from 

450 cm up to 500 cm and the wind speed from 0 m/s 

up to 17.2 m/s; 

 – the climate-weather state c3 – the sea level from 

500 cm up to 550 cm and the wind speed from 0 m/s 

up to 17.2 m/s; 

 – the climate-weather state c4 – the sea level from 

550 cm up to 620 cm and the wind speed from 0 m/s 

up to 17.2 m/s; 

 – the climate-weather state c5 – the sea level from 

415 cm up to 450 cm and the wind speed from 17.2 

up to 33 m/s; 

 – the climate-weather state c6 – the sea level from 

450 cm up to 500 cm and the wind speed from 17.2 

up to 33 m/s; 

 – the climate-weather state c7 – the sea level from 

500 cm up to 550 cm and the wind speed from 17.2 

up to 33 m/s; 

 – the climate-weather state c8 – the sea level from 

550 cm up to 620 cm and the wind speed from 17.2 

up to 33 m/s. 
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Further, taking into account the agreement assumed 

in [9] and [20], the 1st category extreme weather 

hazard state of the climate-weather parameter w1 is 

the interval <550, 620) and the 1st category extreme 

weather hazard state of the climate-weather 

parameter w2 is the interval <17.2, 33). 

Consequently, the 2nd category extreme weather 

hazard state of the climate-weather change process is 

c8, the 1st category extreme weather hazard states of 

the climate-weather change process are c4, c5, c6, c7 

and the 0os category extreme weather hazard states of 

the climate-weather change process are c1, c2, c3. 

The unknown parameters of the climate-weather 

change process semi-Markov model are: 

 – the initial probabilities qb(0), b = 1,2,…,8, of the 

climate-weather change process staying at the 

particular state cb at the moment t = 0, 

 – the probabilities qbl, b, l = 1,2,…,8, ,lb  of the 

climate-weather change process transitions from the 

climate-weather state cb into the climate-weather 

state cl, 

 – the distributions of the climate-weather change 

process conditional sojourn times Cbl, b, l = 1,2,…,8, 

,lb   at the particular climate-weather change states 

and their mean values Mbl = E[Cbl], b, l = 1,2,…,8, 

.lb   

The identification of all these parameters of the 

climate-weather change process could be found in 

[17]. 

 

2.3. Defining parameters of climate-weather 

change process of Maritime Ferry operating 

at Baltic Sea open waters 
 

We distinguish a = 2 parameters which mainly 

describe the climate-weather states of the maritime 

ferry operating at Baltic Sea open waters. These 

parameters are: w1 – the wave height measured in 

meters and w2 – the wind speed measured in meters 

per second. Next, we assume that the possible values 

of the parameters in this area can belong respectively 

to the intervals )14,01 w  and )33,02 w  

according to the data about ranges of hazard 

parameters in [9]. 

Moreover, the parameter w1 values interval <0, 14) is 

divided into n1 = 3 disjoint subintervals: 

 

   <0, 2), <2, 5.5), <5.5, 14) 

 

and the parameter w2 values interval <0, 33) into  

n2 = 2 disjoint subintervals: 

 

   <0, 17.2), <17.2, 33). 

 

Hence, the vector (w1, w2) which describes the 

climate-weather states can take values from the set of 

the following a = 2 dimensional space points of the 

Descartes products: 

 

   <0, 2) x <0, 17.2), <2, 5.5) x <0, 17.2), 

   <5.5, 14) x <0, 17.2), <0, 2) x <17.2, 33), 

   <2, 5.5) x <17.2, 33), <5.5, 14) x <17.2, 33). 

 

We call these products the climate-weather states of 

the climate-weather change process. If all of them 

are sensible then they are numerated from 1  

up to the value 62321  nnw  and marked by  

c1, c2, …, c6. When some of them are not possible to 

happen (are not sensible), then according to an expert 

opinion, we can omit them and their numeration can 

be changed. 
Hence, based on the expert opinion, there are 
distinguished the following w = 6 climate-weather 
states: 
 – the climate-weather state c1 – the wave height 
from 0 m up to 2 m and the wind speed from 0 m/s 
up to 17.2 m/s; 
 – the climate-weather state c2 – the wave height 

from 2 m up to 5.5 m and the wind speed from 0 m/s 

up to 17.2 m/s; 

 – the climate-weather state c3 – the wave height 

from 5.5 m up to 14 m and the wind speed from 0 

m/s up to 17.2 m/s; 

 – the climate-weather state c4 – the wave height 

from 0 m up to 2 m and the wind speed from 17.2 

m/s to 33 m/s; 

 – the climate-weather state c5 – the wave height 

from 2 m up to 5.5 m and the wind speed from 17.2 

m/s to 33 m/s; 

 – the climate-weather state c6 – the wave height 

from 5.5 m up to 14 m and the wind speed from 17.2 

m/s to 33 m/s. 

Further, taking into account the agreement assumed 

in [9] and [20], the 1st category extreme weather 

hazard state of the climate-weather parameter w1 is 

the interval <5.5, 14) and the 1st category extreme 

weather hazard state of the climate-weather 

parameter w2 is the interval <17.2, 33). 

Consequently, the 2nd category extreme weather 

hazard state of the climate-weather change process is 

c6, the 1st category extreme weather hazard states of 

the climate-weather change process are c3, c4, c5 and 

the 0os category extreme weather hazard states of the 

climate-weather change process are c1, c2.  

The unknown parameters of the climate-weather 

change process semi-Markov model are: 

 – the initial probabilities qb(0), b = 1,2,…,6, of the 

climate-weather change process staying at the 

particular state cb at the moment t = 0, 

 – the probabilities qbl, b, l = 1,2,…,6, ,lb  of the 

climate-weather change process transitions from the 
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climate-weather state cb into the climate-weather 

state cl, 

 – the distributions of the climate-weather change 

process conditional sojourn times Cbl, b, l = 1,2,…,6, 

,lb   at the particular climate-weather change states 

and their mean values Mbl = E[Cbl], b, l = 1,2,…,6, 

.lb   

The identification of all these parameters of the 

climate-weather change process could be found in 

[16]. 

 

3. Conclusions 
 

The probabilistic models of the climate-weather 

change processes of the maritime ferry operating at 

Gdynia port area and at Baltic Sea open waters are 

the basis for the considerations in articles [16]-[17]. 

In these articles are shown statistical methods of 

identification and are identified the unknown 

parameters of the climate-weather change processes 

for the maritime ferry operating at Gdynia port area 

and at Baltic Sea open waters. 
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