
Journal of Polish Safety and Reliability Association 

Summer Safety and Reliability Seminars, Volume 7, Number 1, 2016           

 

 

 

73 

Grabski Franciszek 
Naval University, Gdynia, Poland 

 

 

 

Constructing stochastic models for investigation of dangerous events 

and accidents number in Baltic Sea region ports 
 

 

 

 

 

Keywords 
 

stochastic process, Poisson process, safety characteristics 

 

Abstract 
 

The stochastic processes theory provides concepts and theorems that allow to build probabilistic models 

concerning incidents or (and) accidents. Counting processes are applied for modelling number of the dangerous 

events and accidents number in Baltic Sea region ports in the given time intervals. A crucial role in 

construction of the models plays a Poisson process and its generalizations. Three models of the incidents or 

(and) accidents number in the seaports are here constructed. Moreover some procedures of the model 

parameters identification and the computer procedures for anticipation of the dangerous events number are 

presented in the paper. 

 

1. Introduction 
 

The dangerous events and accidents number in Baltic 

Sea region ports in the interval [0,t] are the randomly 

changing quantities. The theory of stochastic 

(random) processes allows the modelling of the 

random evolution of systems through the time. We 

will present briefly the basic concepts of the theory 

of random processes, which is necessary to build the 

models of the dengerous incidents and accidents 

number in the seaports of the Baltic region. 

 

2. Stochastic processes 
 

Let 𝕋 be an arbitrary subset of real numbers ℝ . A 

family of real random variables {𝑋(𝑡): 𝑡 ∈ 𝕋} defined 

on a joint probability space (Ω, ℱ, 𝑃) taking their 

values in a subset 𝑆 ⊂  ℝ is called a random process 

or a stochastic process. A set 𝑆 is called a state space 

or phase space of the stochastic process, while 𝕋 is 

called a set of its parameters. The stochastic process 

is also denoted by  {𝑋𝑡: 𝑡 ∈ 𝕋}. From this definition 

it follows that for every 𝑡 ∈ 𝕋, 𝑋(𝑡) is a random 

variable taking values in 𝑆, with domain Ω. For any 

fixed outcome 𝜔 ∈ Ω, and a fixed 𝑡 ∈ 𝕋, a number 

𝑥(𝑡) ∈ 𝑆 is a value of the random variable 𝑋(𝑡).  
A function 𝑥(⋅) = {𝑥(𝑡): 𝑡 ∈ 𝕋} is said to be  

a trajectory or realization of a random process 

{𝑋(𝑡): 𝑡 ∈ 𝕋}. This function is also called a sample 

function or a path-function. 

For a countable or finite set of parameters 𝕋 , 
{𝑋(𝑡): 𝑡 ∈ 𝕋} is called a stochastic process with a 

discrete time. If 𝕋 = ℕ0 = { 0,1,2, . . . } or  

𝕋 = ℕ = { 1,2, . . . } or 𝕋 =  𝐍 = { 1,2, . . . , n} then 

the stochastic process is said to be a random 

sequence or a random chain. If 𝕋 is an uncountable 

subset of, for example 𝕋 = [0, ∞), then the process 

is called a continuous time stochastic process. 

For a fixed 𝑡 ∈ 𝕋, 𝑋(𝑡) is the random variable, that 

can have different types of distribution: continuous, 

discrete or singular. The distribution of this random 

variable can be also a mix of those three distribution 

types. In the mostly considered cases the distribution 

of 𝑋(𝑡) is continuous or discrete. The random 

process {𝑋(𝑡): 𝑡 ∈ ℕ0} with discrete time and a 

discrete distribution of the random variable 𝑋(𝑡) for 

each 𝑡 ∈ is called a random process of 𝐷𝐷 type. The 

continuous time random process which has the 

discrete distribution of the random variable 𝑋(𝑡) for 

each 𝑡 ∈ is said to be the random process of 𝐶𝐷 type. 

The continuous time random process with continuous 

distribution in an instant 𝑡 is said to be the random 

process of 𝐶𝐶 type.  

A random process {𝑋(𝑡): 𝑡 ≥  0} is said to be process 

with independent increments if for all 𝑡1, … , 𝑡𝑛 such 

that 

 

   0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 
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the random variables 

 

   𝑋(0), 𝑋(𝑡1) − 𝑋(0), …  𝑋(𝑡𝑛) − 𝑋(𝑡𝑛−1) 
 

are mutually independent. If the increments  

𝑋(𝑠) − 𝑋(𝑡) and 𝑋(𝑠 + ℎ) − 𝑋(𝑡 + ℎ) for all 

𝑡, 𝑠, ℎ > 0, 𝑠 > 𝑡 have the identical probability 

distributions then {𝑋(𝑡): 𝑡 ≥ 0} is called a process 

with the stationary independent increments (SII). It 

is proved, that for the SII processes such that 𝑋(0) =
0 an expectation and a variance are 

 

   𝐸[𝑋(𝑡)] = 𝑚1 𝑡, 𝑉[𝑋(𝑡)] = 𝜎1
2 𝑡,                       (1) 

 

where 

 

   𝑚1 = 𝐸[𝑋(1)] and 𝜎1
2 = 𝑉[𝑋(1)].                      (2) 

 

An example of a SII random process is a Poisson 

process. A stochastic process {𝑋(𝑡);  𝑡 ≥ 0} taking 

values on 𝑆 = {0,1,2, … }, with the right continuous 

trajectories is said to be a Poisson process with 

parameter 𝜆 > 0 if:  
1. 𝑋(0) = 0, 
2. {𝑋(𝑡): 𝑡  ≥ 0} is the process with the 

       stationary independent increments, 
3. For all 𝑡 > 0, ℎ ≥  0,  
 

   𝑃(𝑋(𝑡 + ℎ) − 𝑋(𝑡) = 𝑘) =
(𝜆 ℎ)𝑘

𝑘!
 𝑒−𝜆 𝑡 , 𝑘 ∈ 𝑆   (3) 

 

For 𝑡 = 0 we get a first order distribution of the 

Poisson process: 

 

   𝑝𝑘(ℎ) = 𝑃(𝑋(ℎ) = 𝑘) =
(𝜆 ℎ)

𝑘 !
 𝑒−𝜆 ℎ , 𝑘 ∈ 𝑆        (4) 

 

For ℎ = 1 we obtain the Poisson distribution with 

parameter 𝜆. Hence 𝐸[𝑋(1)] = 𝜆 and 𝑉[𝑋(1)] = 𝜆. 
Therefore, from (1) and (2), we obtain the 

expectation and the variance of the Poisson process: 

 

   𝐸[𝑋(𝑡)] = 𝜆 𝑡, 𝑉[𝑋(𝑡)] = 𝜆 𝑡, 𝑡 ≥  0.                 (5) 

 

For a fixed 𝑡 this formula determines the Poisson 

distribution with parameter Λ = 𝜆 𝑡: 

 

   𝑝(𝑘) = 𝑃(𝑋 = 𝑘) =
(Λ)𝑘

𝑘 !
 𝑒−Λ, 𝑘 ∈ 𝑆.                  (6) (1) 

 

Using this formula we have written a short procedure 

in a MATHEMATICA computer program which 

allows to calculate these probabilities. 

 

 

 

The procedure of calculation of the Poisson 

distribution  

 

 
 

Let 0 < 𝜏1, < 𝜏2, … represent the consecutive instants 

of the state changes (jumps) in the Poisson process or 

another process with the right continuous, 

nondegreasing and picewise constant trajectories. 

The random variables 𝜗1 = 𝜏1,  𝜗2 = 𝜏2 − 𝜏1,  … 

denote the sojourn times of the states 0, 1, …. . Let us 

notice that 

 

   𝜏0 = 𝜗0 = 0, 𝜏𝑛 = 𝜗1 + 𝜗2 + ⋯ + 𝜗𝑛, 𝑛 ∈ ℕ, 

   𝜏∞ = lim
𝑛→∞

𝜏𝑛 = sup{𝜏𝑛: 𝑛 ∈ ℕ0}. 

 

A stochastic process {𝑁(𝑡): 𝑡 ≥  0} defined by the 

formula 

 

   𝑁(𝑡) = sup{𝑛 ∈ ℕ0: 𝜏𝑛 ≤ 𝑡} 

 

is called a counting process corresponding to a 

random sequence {𝜏𝑛 : ∈ ℕ0}. 

For the Poisson process with parameter 𝜆 the random 

variables 𝜗1, 𝜗2, … , 𝜗𝑛, 𝑛 = 2,3, … are mutually 

independent and exponentially distributed with the 

identical parameter 𝜆.  

The Poisson process is a counting process which is 

genereted by the random sequence {𝜏𝑛 : ∈ ℕ0}, 

where 𝜏𝑛 = 𝜗1 + 𝜗2 + ⋯ + 𝜗𝑛, 𝑛 ∈ ℕ. 

 

3. Poisson process as a stochastic model  

of dangerous events and accidents number  

in Baltic Sea region ports 
 

Let {𝑁(𝑡);  𝑡 ≥ 0} be a stochastic process taking 

values on 𝑆 = {0,1,2, … }, value of which represents 

the number of accidents or dangerous incidents at a 

particular port of the Baltic Sea in a time interval 

[0, 𝑡]. Due to the nature of these events, pre-

assumption that it is a Poisson process with some 

parameter 𝜆 > 0 , seems to be justified. 

 

3.1. Procedure of parameter 𝝀 identification 
 

Let 0 < 𝜏1, < 𝜏2, … represent the consecutive 

moments of dangerous incidents. It was above 

mentioned, the random variables 𝜗1 = 𝜏1,   

𝑎 = 𝛬 
Print ["n=", n=4, " a=", a=3] 

For [k = 0, k ≤ n, k++,  

Print [" p [",k,"]", p[k] = 
𝑎𝑘

𝑘!
𝑒−𝑎 // N] ] 

Print [" 𝑃(X ≤ n) = ", " P(X > n) = " 

            ∑𝑛
𝑘=0  p[k], "1-∑𝑛

𝑘=0  p[k] ] 
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𝜗2 = 𝜏2 − 𝜏1, … , 𝑛 = 1,2,3, …  are mutually 

independent and exponentially distributed with the 

identical parameter 𝜆. Because 

 

   𝐸[ϑ] =
1

𝜆
                                                               (7) 

 

then 

 

   𝜆 =
1

𝐸[ϑ]
,                                                                (8) 

 

If the numbers  𝑥1, 𝑥2, … , 𝑥𝑛 are values of random 

variables    𝜗1, 𝜗2, … , 𝜗𝑛, than an estimate of 𝐸[ϑ] is 

mean 

 

   𝑥̅ =
𝑥1+𝑥2+⋯+𝑥𝑛

𝑛
.                                           (9) 

 

Finally the parameter 𝜆 can be calculated by the rule 

 

   𝜆 =
𝑛

𝑥1+𝑥2+⋯+𝑥𝑛
=

1

𝑥̅
.                                 (10) 

 

3.2. Illustrative example 
 

In Table 1 are presented “observations” of the times 

between incidents (accidents). 

 

Table 1. Observations of the times between incidents 
 

Number 1 2 3 4 5 6 7 8 
Time 

between 

incidents 
[days] 

 

1.2 

 

27.9 

 

4.7 

 

9.3 

 

15.0 

 

13.2 

 

19.8 

 

1.3 

Number 9 10 11 12 13 14 15 16 
Time 
between 

incidents 

[days] 

 

8.5 

 

10.6 

 

28.4 

 

3.1 

 

3.8 

 

17.7 

 

9.6 

 

12.3 

 

Using (9) we obtain 

 

    𝜆 =
1

𝑥̅
=

1

11.65
= 0.0858 [

1

𝑑𝑎𝑦
]                            (11) 

 

A first order distribution of the Poisson process 

describing number dangerous incidents at a particular 

port in a time interval [0, 𝑡]  is 

 

   𝑃(𝑁(𝑡) = 𝑘) =
(0.0858 𝑡)𝑘

𝑘 !
 𝑒−0.0858 𝑡,                 (12) 

   𝑘 = 0, 1 ,2 , … 
 

3.3. Anticipattion of the dangerous incidents  

number 
 

From (3) we get 

 

   𝑃(𝑁(𝑡 + ℎ) − 𝑁(𝑡) = 𝑘) =
(𝜆 ℎ)𝑘

𝑘!
 𝑒−𝜆 ℎ,          (13) 

It means that we can anticipate number of dangerous 

incidents at any time interval with a length of h.  

 

3.4. Numerical Example 
 

Under assumption that the parameter  

𝜆 = 0.0858 [
1

𝑑𝑎𝑦
], the distribution of dangerous 

incidents number at the time interval [146, 206] has 

the Poisson distribution with parameter 

 

Λ = 𝜆 ℎ = 0,0858 ⋅ 60 = 5.148. 
 

Therefore 

 

   𝑝𝑘(60) = 𝑃(𝑁(206) − 𝑁(146) = 𝑘) 

                   =
(5.148)𝑘

𝑘!
 𝑒−5.148, 𝑘 = 0,1,2, … 

 

The procedure of calculation of the number 

dangerous incidents distribution in this case takes the 

form 

 

 
 

Finnally we obtain: 

 

   n= 6 , a= 5.148 

   p[0]= 0.00581102 

   p[1]= 0.0299151 

   p[2]= 0.0770015 

   p[3]= 0.132135 

   p[4]= 0.170057 

   p[5]= 0.175091 

   p[6]= 0.150228 

   P(X ≤ n) = 0.740238, P(X > n) = 0.259762 

 

We can see that the most probable number  

of incidents in a time interval lengh of 60 days is 5, 

but the probability of this event is only 0.175091. 

The number of incidents is not greater than 6 with 

probability 0.740238. 

 

4. Model describing total sum of different 

kind of accidents in seaport 
 

Models describing total sum of accidents in the 

different seaports and the in the Baltic see region. 

The procedures of assessment of the models 

parameters. 

a= 5.148 

Print ["n=", n=6, " a=", a=5.148] 

For [k = 0, k ≤ n, k++,  

Print [" p [",k,"]", p[k] = 
𝑎𝑘

𝑘!
𝑒−𝑎 // N] ] 

Print [" P(X ≤ n)= ", " P(X > n)= " 

           ∑𝑛
𝑘=0  p[k], "1-∑𝑛

𝑘=0  p[k] ] 
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The procedures for calculating the probabilities  

of expected number of accidents. 

Let  {𝑁𝑘(𝑡);  𝑡 ≥ 0}, 𝑘 = 1,2, … , 𝑛 denote numbers of 

different kind of accidents in a seaport. We suppose 

that {𝑁𝑘(𝑡);  𝑡 ≥ 0}, 𝑘 = 1,2, … , 𝑛 are independent 

Poisson processes with parameters 𝜆1, 𝜆2, … , 𝜆𝑛. The 

parameter 𝜆𝑘 may be estimated based on the length 

of the intervals between successive accidents of a 

type k the same way like for a parameter 𝜆, (see (10)). 

From the so-called theorem on adding of the random 

variables with Poisson distributions it follows that 

the sum of 𝑛 independent Poisson processes with 

parameters 𝜆1, 𝜆2, … , 𝜆𝑛, is the Poisson process with 

parameter 𝜆 = 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛. It means that the 

process {𝑁(𝑡);  𝑡 ≥ 0}, 𝑁(𝑡) = 𝑁1(t) + 𝑁2(𝑡) +
⋯ + 𝑁𝑛(𝑡)   is the Poisson process with parameter 

𝜆 = 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛. This process counts total 

number of accidents in a seaport in a time interval 
[0, 𝑡].  A first order distribution of this process is 

given by the rule 

 

   𝑃(𝑁(𝑡) = 𝑘) =
(𝜆 𝑡)𝑘

𝑘 !
 𝑒−𝜆 𝑡 , 𝑘 = 0, 1 ,2 , … ,   

 

where 𝜆 = 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛. 

Probability of the k different kind of accidents at any 

time interval with a length of h is 

 

   𝑃(𝑁(𝑡 + ℎ) − 𝑁(𝑡) = 𝑘) =
(𝜆 ℎ)𝑘

𝑘!
𝑒−𝜆 ℎ  ,          (14) 

   𝑘 = 0, 1 ,2 , … . 
 

5. Random parameter in Poisson model 
 

The expected number of accidents often depends on 

changing randomly external conditions. Thus it can 

be assumed that the parameter 𝜆 is a random 

variable. We assume that this random variable has a 

gamma distribution with a density 

 

   𝑓(𝑢) = {
𝛼𝜈

Γ(𝜈)
𝑢𝜈−1𝑒−𝛼 𝑢   for  u > 0

0                for  u ≤ 0
                  (15) 

 

where 𝛼 > 0,   𝜈 > 1. 
Suppose that a condition distribution of the accidents 

number given 𝜆 has a Poisson distribution 

 

   𝑃(𝑁(𝑡) = 𝑘| 𝜆) =
(𝜆 𝑡)𝑘

𝑘 !
 𝑒−𝜆 𝑡 ,                            (16) 

   𝑘 = 0, 1 ,2 , … ,   
 

Using the formula for the total probability is 

calculated unconditional one-dimensional 

distribution of the process. 

For 0k  we obtain 

   𝑃(𝑁(𝑡) = 0) = 𝑃(𝜗1 > 𝑡) = (
𝛼

𝛼+𝑡
)

𝜈
.                (17) 

 

For 𝑘 =  1 ,2 , … we have 

 

   𝑃(𝑁(𝑡) = 𝑘) = ∫
(𝑢𝑡)𝑘𝑒−𝑢𝑡

𝑘!

∞

0
 

𝛼𝜈

𝛤(𝜈)
𝑢𝜈−1𝑒−𝛼 𝑢𝑑𝑢            

                                                                              (18) 

 

Finally we obtain [4]: 

 

   𝑃(𝑁(𝑡) = 𝑘) =                            

   =  
𝜈(𝜈+1)…(𝜈+𝑘−1)

𝑘!
(

𝑡

𝑡+𝛼
)

𝑘
(

𝛼

𝑡+𝛼
)

𝜈
,                       (19) 

  𝑘 =  1 ,2 , … , 𝜈 > 1, 𝜆 >0. 

 

The random variable T= 𝜗𝑛, 𝑛 =  1 ,2 , … is the time 

which elapses between successive accidents.  

The function 

 

   𝑅(𝑡) = 𝑃(𝑇 > 𝑡) = (
𝛼

𝛼+𝑡
)

𝜈
, 𝑡 ≥ 0                    (20) 

 

is called survival function. Cumulative distribution 

function  (CDF) of the random variable T has the 

form 

   𝐹(𝑡) = 1 − (
𝛼

𝛼+𝑡
)

𝜈
, 𝑡 ≥ 0.                                 (21) 

 

and corresponding to it a probability density function 

is 

 

   𝑓(𝑡) =
𝜈 𝛼𝜈

(𝛼+𝑡)𝜈+1   , 𝑡 ≥ 0                                      (22) 

 

The expected value of this random variable is 

 

   𝐸(𝑇) = ∫ (
𝛼

𝛼+𝑡
)

𝜈
𝑑𝑡 =

𝛼

𝜈−1
.           

∞

0
                   (23) 

 

The second moment is 

 

   𝐸(𝑇2) = 2 ∫ 𝑡 (
𝛼

𝛼+𝑡
)

𝜈
𝑑𝑡 =

2𝛼2

(𝜈−1)(𝜈−2)

∞

0
.            (24) 

 

The variance is 

 

It should be mentioned that the variance there exists 

if 𝜈 > 2. 
 

   𝑉(𝑇) =   
𝛼2𝜈

(𝜈−1)2(𝜈−2)
.                                            (25) 

 

The standard deviation takes the form  

 

   𝜎(𝑇) = 𝐸(𝑇)√
𝜈

𝜈−2
                                                (26) 
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5.1. Procedure of parameters identification 
 

Notice that these values depend on the two 

parameters: both 𝛼 and 𝜈. There is a natural question, 

how to determine these parameters. One method of 

estimating the unknown parameters is the so called 

the method of moments. In this method the unknown 

parameters are replaced by their statistical estimates 

derived from the results of observation. In this case, 

the expected value is replaced by the average of the 

sample and the second moment of the random 

variable is replaced by the second moment of the 

sample. Solving the corresponding system of 

equations we obtain the unknown parameters of the 

distribution.  

Let the numbers  𝑥1, 𝑥2, … , 𝑥𝑛 are the values of 

random variables    𝜗1, 𝜗2, … , 𝜗𝑛, denoting the time 

between successive accidents.  An estimate of the 

expectation E(T)  is mean: 

 

   𝑥̅ =
𝑥1+𝑥2+⋯+𝑥𝑛

𝑛
                                                    (27) 

 

and the estimate of is the the second moment from 

the sample: 

 

   𝑥2̅̅ ̅ =
𝑥1

2+⋯+𝑥𝑛
2

𝑛
.                                                    (28) 

 

Applying the method of moments we obtain the 

system of equations 

 

   𝑥̅ =
𝛼

𝜈−1
,   𝑥2̅̅ ̅ =

2𝛼2

(𝜈−1)(𝜈−2)
 .                               (29) 

 

The solution is given by the rules 

 

   𝜈 = 1 −
𝑥2̅̅̅̅

(𝑥̅)2− 𝑥2̅̅̅̅ ,   𝛼 = 𝑥̅ (𝜈 − 1).                      (30) 

 

5.2. Illustrative example 
 

We compute the values of parameters 𝛼 and 𝜈 for the 

data from the Table 1. Using the equation (30) we 

obtain 

 

   𝜈 = 4   𝛼 = 35,03.                                                (31) 

 

To anticipate a number of dangerous accidents at any 

time interval with a length of t we can use the rules 

(17) and (19). 

Applying (17) and (19) was written brief procedure 

in a MATHEMATICA computer program that for 

calculating probabilities in the considered 

distribution. 

The procedure of calculation of the number 

dangerous accidents distribution in this case for 𝑡 =
60 [𝑑𝑎𝑦]   is of the form: 

 
 

As a result of these calculations, we get 

 

   n= 6 , α= 35 , t= 60 , ν= 4 

   p[0]= 0.0184237 

   p[1]= 0.0465442 

   p[2]= 0.0734908 

   p[3]= 0.0928305 

   p[4]= 0.102602 

   p[5]= 0.103682 

   p[6]= 0.0982252 

   𝑃(𝑋 ≤ 𝑛) = 0.5357, 𝑃(𝑋 > 𝑛) = 0.4643 . 
 

We can notice that the most probable number of 

accidents in a time interval lengh of 60 days is 5, but 

the probability of this event is 0.1037. The number of 

accidents is not greater than 6 with probability 

0.5357 Probability that there will be no accidents is 

equal to 0.0184 whereas in the previous model, it is 

0.0058. It is a three times more than the Poisson 

model. 

 

6. Conclusions 
 

The random processes theory deliver concepts and 

theorems that enable to construct stochastic models 

concerning the incidents or (and) accidents. Counting 

processes and processes with independent 

increaments are the most appropriate for modelling 

number of the dangerous events and accidents 

number in Baltic Sea region ports in specified period 

of time. A crucial role in the models construction 

plays a Poisson process and its generalizations. Three 

models of the incidents and accidents number in the 

seaports are here constructed. Moreover some 

procedures of the model parameters identification 

and the computer procedures for anticipation of the 

dangerous events number are presented in the paper. 

To select the most appropriate model one should 

verify the models using appropriate statistical tests. 

But it requires a large number of data. 
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