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Abstract 
 

Critical Infrastructures’ disruptions may result in crises of unacceptable outcomes in modern societies. Thus, it 

is important to develop models that allow describing CIs’ disruptions and their propagation characteristics. CI 

disruptions depend on both the type of the threat and on the nature of the CIs’ mutual dependencies. A model 

describing the cascade of disruptions should, then, be able to consider the CI-threat vulnerability and the CI-CI 

dependency. The paper presents a model where cascades are exactly described using an integral equation. The 

integral equation admits an analytical solution if the occurrence probability distribution functions (pdf) of the 

disruptions obey Stochastic Poisson Processes (SPP). The introduction of the “vulnerability to the threat” and 

the “CIs’ (inter)dependencies” is carried out with the help of time constant factors called: “vulnerability strain 

factor” and “disruption strain factor”, respectively. An academic case is presented in order to demonstrate the 

applicability of the model and illustrate some interesting features of the model. A complete set of numerical 

applications will be published separately. 

 

1. Introduction 
 

A succession of disruptions can be treated as a 

sequence of some ordered events. Ordered events 

analyses are frequently met in system safety and 

reliability analyses under the title “sequence 

analysis”. Analysts may use “Event trees”, “Dynamic 

Fault Trees” with “Priority Gates”, “Markov Graphs” 

or “Monte-Carlo Simulation” tools in order to deal 

with the dynamic aspect of this problem. The 

problem is also known as cascading of failures 

modelling. 

Whatever is the method used to describe the 

“sequence” of events, one would often like to 

determine occurrence probabilities. It is also of great 

interest to determine occurrence probability densities 

and occurrence rates. Other probabilistic quantities 

can also be of interest depending on the case. 

It has been demonstrated that there exist an analytical 

solution to this problem when the involved 

disruptions are independent and if they follow 

Stochastic Poisson Process (SPP) [1], [4]. 

However, in the case of a cascade of disruptions, one 

should consider the dependency on the threat and on 

the other CIs’ disruptions. That requires the 

introduction of new parameters, describing CI’s 

vulnerability (threat dependency) and disruptions 

dependency (CIs (inter-)dependency). The resultant 

model may then be complex. The complexity of the 

resultant model will depend on the complexity of 

these new parameters. 
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Now and then, the term “dependency” will 

exclusively be used to describe CIs’ disruption 

dependency and interdependency while the term 

“vulnerability” will be used for the disruption-threat 

dependency. We will distinguish later between the 

dependency and the interdependency, as well. 

 

2. CI vulnerability to threats 
 

The term “Vulnerability” is used here to describe the 

dependency between a well-defined threat and the 

disruption of a well-defined CI (with respect to a 

given disruption mode). A CI does not react to all 

threats in the same manner. The stochastic disruption 

of the CI is dependent on the threat specifications. In 

our model, a vulnerability matrix is established for 

each identified CI disruption mode and corresponds 

to a well-specified set of threats. It is obvious that the 

set of the involved threats depends on the location of 

the CI. The threat is generally specified by its: 

intensity, magnitude, likelihood, locality and 

dynamics. 

The vulnerability of a given CI “i” to a well-defined 

threat “j”will be described using a vulnerability 

strain factor “ ij ”. The disruption rate )( ji  of a 

given CI “i” under the action of the threat “j” will 

then be given by: 

 

   
)( ji = )1)(( iji    

 

Where, )(i  is the systemic (unstressed) disruption 

rate of the CI, “ i ”, and ij  is its vulnerability strain 

factor regarding the threat, “j”. The strain factor ij  

is a positive parameter. 

If the CI, “ i ”, is acted upon by multiple N threats, its 

effective disruption rate 0,N
i  will, then, be given by: 
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Where,
0,N

i  is the effective disruption rate. 

In the presented model, threats act on the same CI 

independently. We have not considered the 

possibility of a compound damage mechanisms. 

Considering independently the vulnerability of each 

threat gives a conservative estimation of the effective 

disruption rate. 

 

3. CIs dependency & interdependency 
 

In order to count for the cascading of disruptions, the 

possible dependencies between CIs should be 

analysed and considered, as well. In the presented 

model, a disruption dependency matrix (D-D matrix) 

is established describing the existing dependency 

between a given set of identified CIs. It is obvious 

that the set of considered CIs depends on the mode of 

the disruptions of all considered CIs. 

The dependency of the disruption of a given CI “i” 

on the disruption of another CI “j” is described by a 

factor ij  that is called the CI disruption dependency 

strain factor. The disruption rate )( ji  of a given CI 

“i” given the disruption of the CI “j” is then given by: 

 

   
)( ji = )1)(( iji    

 

Where, )(i  is the systemic (unstressed) disruption 

rate of the CI, “i”, and ij  is its dependency strain 

factor regarding the disruption of the CI, “j”. 

A disruption dependency is “directional” if the 

disruption of the CI “j” impacts on the disruption of 

the CI “i”, while the inverse is not true. In that case, 

one has 0ij  and 0ji . 

If the disruption dependency is not directional, it is 

called “interdependency” rather than “dependency” 

and have, generally, ),,0( kllk   and )( jiij   . 

If the CI, “i”, is acted upon by multiple disruptions of 

other M  CIs, its effective disruption rate M
i
,0  will, 

then, be given by: 
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In the presented model, the disruptions of many CIs 

act independently on the CI. We have not considered 

the possibility of a compound damage mechanisms. 

Considering independently the impact of each other 

disruption gives a conservative estimation of the 

effective disruption rate. 

 

4. Modelling dependency & multi-threat 

vulnerability  
 

In a complex case, where there are multi-threat 

actions and many disrupted CIs simultaneously, the 

overall effective disruption rate MN
i

,  will be given 

by: 
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Where N  refers to the number of the simultaneous 

acting threats and M  refers to the number of the 

already disrupted CIs. 
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5. Determination of the Strain Factors 
 

The main difficulty of this model is to find out the 

strain factors (vulnerability to threats and disruptions 

dependency). Crud data are available in different 

databases but a systematic data-mining and data 

statistical treatment are strongly lacking. 

An example of the crud vulnerability data is, e.g., the 

“number of electrical blackouts” each time “wind 

speed is higher than 50 km/h”, in a given location. 

This information can help in determining the 

vulnerability strain factor of the electrical grid to 

strong wind. 

Another example of the crud disruptions 

independency data is, e.g., the “number of 

disruptions of water supply” each time an electrical 

blackout occurs. These information can help in 

determining the dependency strain factor of the water 

supply system disruptions on the electrical grid 

disruptions. 

The screening of existing records about past crises 

involving CIs disruptions with and without threats 

action would enable us to extract the required strain 

factors,applying the appropriate statistical treatments.  

Individually, most of the CI owners and operators 

have the preliminary data necessary to work out the 

threats vulnerability strain factors (regarding strong 

winds, torrential rains, earthquakes, volcano 

eruptions, extreme cold/hot weather, violent solar-

winds etc. …) and the CI disruption dependency 

strain factors (energy/communication, 

communication/energy, communication/transport, 

energy/transport, energy/water-supply etc. …). 

 

6. Cascading of Systemic Disruptions 
 

LetT  be a well-defined top event, occurs if and only 

if some discrete and independent disruptions ie  

happen in a well-specified chronological order 

 neeee  ...321 .  

The top event T  is a sever accident or a major crisis. 

The corresponding occurring instants of the 

elementary disruptions are defined by  ntttt ,...,,, 321 , 

where  ntttt  ...321 . Each of these instances 

 ntttt ,...,,, 321  has its distribution probability density 

function (pdf). The first disruption event is 1e  and 

the last is ne . 

The probability )(tpn  that the major crisisT  

happens within the interval [0,t] is given by: 

 

   
)(tpn =  
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t
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t

d
1

222 )(


 *…* 


t

nnn

n

d
1

)(


       (1) 

 

where i  is any probability density function (pdf) 

characterising the occurrence instances of events ie . 

Whatever the type of the density probability 

functions i , the integral in (1) can hopefully be 

solved in many cases.  

It can be solved: numerically or by Monte-Carlo 

Simulation (MCS). 

However, there exists an analytical solution if i

obeys a Poisson probability density function [1].   

 

7. Stochastic Poisson Process 
 

If i  follows a Poisson probability density function, 

it would be described as following: 

 

   i =
t

i
ie
 

*                    (2) 

 

where i  is the occurrence rate of disruption ie . 

Many authors have previously developed approached 

analytical solutions for equation (1) when it was a 

matter of limited number of ordered events obeying a 

Poison’s Stochastic Process, e.g, [5]-[7].  

But, none gave an exact analytical general solution. 

Some of the solutions were asymptotic and others 

were approximated.  

An exact solution of (1) has been developed in [1] 

and has the following form: 
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where each event ie  is defined by a constant 

occurrence rate i , {  ni ,...,2,1 } and the 

coefficient 1
1
iC  is given by: 
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where ij ,...,2,1 ,  ni ,...,2,1  and 
1

1C  = 1. 

 

8. Integration of the dependency & 

vulnerability 
 

The integration of the CIs’ vulnerability and 

disruption dependency, in the model, is straight 

forward such as: 
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where i  is the effective occurrence rate of 

disruption ‘i’ under the action of N  threats and M
disrupted CIs. 

Certainly, the solution given in (3) is valid, if and 

only if, vulnerability stress factors ij  and the 

dependency stress factors ij  are time-constant, as 

well. 

 

9. Disruptions cascading assessment 
 

As shown in (3), for each well-defined cascade of 

disruptions, one can determine its occurrence 

probability. However, some other probabilistic 

characteristic quantities can also be determined, such 

as: 

 The occurrence density and the occurrence rate 

functions 

 The mean time to occur 

 The asymptotic stochastic behavior. 

 

9.1. Occurrence Density and Occurrence rate 
 

By definition, the corresponding occurrence density 

function )(ti  can directly be deduced, from (3), 

using the first derivative as following: 

 

   
)(tn =

dt

tdpn )(
. 

 

The occurrence density function will then be given 

by: 
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The equivalent occurrence rate i  of the whole 

sequence (cascade), is determined such as: 
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As we may expect, although the ordered events are 

individually governed by a SPP, the sequence T  is 

not. The occurrence rate of the sequence T  is time 

dependent, (7). 

 

9.2. Mean-time to occur 
 

One may also determine the mean time to occur n  

corresponding to a given sequence ( nS ) of n-events 

 neeee ,...,,, 321 , such as: 
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9.3. Asymptotic occurrence probability 
 

Having demonstrated that the occurrence probability 

)(tpn  of a given cascade of disruptions can be 

described by equation (3), it is straightforward to 

demonstrate that the occurrence probability )(tpn  

has an asymptotic value equal to: 

 

   
)( tpn  



n

j

n
jC

1

      (9) 

 

10. Study case 
 

We are considering a hypothetical major crisis 

occurs when four disruptions  4321 ,,, eeee occur. The 

systemic occurrence rates of the elementary 

disruptions are constant and having the following 

values: 10-4/h, 5·10-3/h, 2.5·10-2/h, 1.25·10-1/h, 

respectively. Thus, they are following SPPs. 

Given a threat, 1Th  the vulnerability strain factors 

ij  are, respectively: 1,0,1,0. That means that only 

disruptionse1 and e3 are impacted by the threat and 

their vulnerability strain factors are equal to 1. 

Regarding, the disruption dependency strain matrix 

is given below, Table 1.  

Table 1 shows that the disruption e2 impacts on the 

disruptions e3 and e4, with the dependency strain 

factors 0,3 and 0,2 respectively. 

Table 1 shows also the CIs disruption dependency is 

directional. No interdependency is considered, then.  

 

Table 1. DDS Matrix 
 

  Impacting disruptions 

  1e  2e  3e  
4e  

Impacted 

disrup. 

1e  0 0 0 0 

2e  0 0 0 0 

3e  0 0,3 0 0 

4e  0 0,2 0 0 
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Accordingly, the stressed occurrence rates will be: 

 

   
1,1

1 = )01)(11(10 4 
 

   
1,1

2 = )01)(01(10*5 3 
 

   
1,1

3 = )3.01)(11(10*5.2 2 
 

   
1,1

4 = )2.01)(01(10*25.1 1 
. 

 

In this illustrative case, the occurrence probability of 

the major crisis )(4 tp  has been calculated and traced, 

Figure 1, in an interval of time of 80 hours.  

The two situations (stressed and unstressed CI) are 

presented. Unstressed situations are when the CIs 

disruption are due to random systemic reasons. 

While, stressed situations are when one considers in 

addition the threat and the CIs’ dependency.  

The asymptotic occurrence probability )(4 tp is 

equal to 12% and to 13% in the unstressed and 

stressed situations, respectively. Stressing the CIs has 

increased by 8% the likelihood of the occurrence of 

the crisis. 

The occurrence rate of the cascade of disruptions is 

also traced in Figure 2, for stressed and unstressed 

CI. Both rates are decreasing with time but that of 

the stressed situation decreases somehow faster after 

the first 20 hours. This is mainly because disruptions 

3e  and 4e  occur faster than 1e  and 2e . If any of 3e  

and 4e  occurs before any of 1e  and 2e , the rate of 

observing a cascade in the required order 

4321 eeee   is evidently decreasing with 

time. This fact is amplified during the stress phase 

because the occurrence rate of 3e  is even faster.  

 

 
 

Figure 1. Cascad occurrence probability (stressed 

and unstressed CIs) 

 

Many other quantities relevant to the resilience and 

recovery characteristic of the CIs can be determined 

using the same model after the introduction of both 

the vulnerability and the disruption dependency 

strain factors. These quantities for resilience and 

recovery characteristic have already been assessed, 

in [2]-[3] in the case of unstressed CIs. 

 

 
 

Figure 2. Cascad occurrence pdf (stressed and 

unstressed CIs) 

 

11. Conclusion 
 

An original model describing the cascading of CI’s 

disruptions analytically, thanks to three 

simplifications: the disruptions obey stochastic 

Poisson’s processes, the dependence of the CI’s 

disruption and the threat is described by a constant 

vulnerability stress factor and the (inter-) 

dependencies between the CIs are described using a 

CI’s disruption stress factor. 

The model suits the law statistical quality of the 

available data on vulnerability and CIs’ (inter-) 

dependency. It, also, suits the end-users’ persisting 

requirements of avoiding complex models. 
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