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Abstract 
 

This paper deals with a condition-based maintenance strategy (CBM) in finite-time horizon for a system subject 

to two different causes of failure, internal degradation and sudden shocks. Internal degradation is modelled 

under a gamma process and sudden shocks arrive at the system following a non-homogeneous Poisson process 

(NHPP). Both causes of failure are considered as dependent. When a sudden shock takes places, the system 

fails. In addition, the system is regarded to fail when the deterioration level reaches a critical threshold. Under 

this functioning scheme, a CBM strategy is developed for controlling the reliability of the system. Traditionally, 

this strategy is developed under an asymptotic approach. Hence, considering an infinite-time horizon is not 

always possible. In this paper, we analyse a CBM strategy under a finite-time horizon developing a recursive 

method which estimates the expected cost rate based on numerical integration and Monte Carlo simulation. A 

numerical example is provided in order to illustrate this complex maintenance model. 

 

1. Introduction 
 

Most systems are degraded over time. This 

degradation process complicates maintenance tasks 

since it is uncertain and depends on the time. 

Maintenance strategies regulate maintenance tasks 

which must be performed on the system. Establishing 

a good maintenance task, we can ensure the correct 

functioning of the system and optimize the 

maintenance cost.  

The gamma process is a stochastic cumulative 

process, which is considered as one of the most 

appropriated processes for modeling the damage 

involved by the cumulative deterioration of systems 

and structures [9]. 

However, systems are not only subject to internal 

degradation, but also are exposed to sudden shocks 

which can cause its failure. Sudden shocks arrive at 

the system following a non-homogeneous Poisson 

process (NHPP). Up to we know [7] were the first to 

combine both causes of failure, proposing 

Degradation-Threshold-Shock (DTS) models. Thus, 

the failure time of a system subject to these two 

causes of failure is the minimum instant between 

when degradation reaches a critical threshold and 

when a sudden shock occurs.  

Traditionally, condition-based maintenance (CBM) 

strategies have been programmed for controlling the 

reliability in DTS models. In most papers, the 

criterion for optimizing CBM strategies is the 

asymptotic cost rate [2]-[3], [5]-[6] which equals the 

expected cost in a renewal cycle divided by the 

length of the renewal cycle. However, most systems 

have a finite operating life-time due to, when a 

system fails; it cannot always be replaced by a new 

one with the same characteristics as the previous one. 

In those cases, the use of the asymptotic approach is 

questionable and the cost must be analyzed in a 

transient way. 

Although maintenance policies which consider a 

finite-time horizon are more realistic than those 

considering an infinite-time horizon, the first ones 

are less used due to the analytical and computational 

difficulty of treatment that they involve. 

[4] and [8] proposed CBM strategies in finite-time 

for systems subject to a degradation process modeled 

by using a gamma process where time was 

considered as a discrete time. This paper expands 

these works by considering the time as a continuous 



Caballé Nuria C., Castro Inma T. 

A Degradation-Threshold-Shock model for a system. The case of dependent causes of failure in finite-time 

 

 

 

14 

variable and by adding a new component of risk 

(sudden shocks), whose arrival depends on the 

internal degradation process of the system. Up to our 

knowledge, a CBM strategy in a DTS model in a 

finite-time horizon for a system has not been 

considered yet.  

In this paper, we propose a CBM strategy for a 

system subject to two dependent causes of failure: 

internal degradation modeled under a gamma process 

and sudden shocks which follow an NHPP. Both 

causes of failure are dependent in the sense that the 

system is more susceptible to a sudden shock when 

the deterioration level of the system reaches a certain 

threshold. Under this framework, a recursive method 

which combines numerical integration and Monte 

Carlo simulation is proposed in order to obtain the 

expected cost in finite-time horizon. A numerical 

example is provided for illustrating this complex 

maintenance model. 

 

2. Framework of the problem 
 

The general assumptions of this model are: 

 The system starts working at time 𝑡 = 0. This 

system is subject to an internal degradation process 

which evolves depending on the environmental 

conditions and the components according to a 

gamma process with parameters 𝛼 and 𝛽 for 𝛼, 𝛽 >
0. Let 𝑋(𝑡) be the deterioration level of the system 

at time 𝑡 = 0. Thus, for two time instants 𝑠 and 𝑡, 

with 𝑠 < 𝑡, the density function of the increment 

deterioration 𝑋(𝑡) − 𝑋(𝑠) is given by 

 

   𝑓α(t−s),β(x) =
𝛽𝛼(𝑡−𝑠)

Γ(α(t−s))
𝑥𝛼(𝑡−𝑠)−1𝑒−𝛽𝑥               

(1) 

 

for 𝑥 > 0, where Γ(·) denotes the gamma function 

defined as 

 

   Γ(α) = ∫ 𝑢𝛼−1𝑒−𝑢 𝑑𝑢
∞

0
.                                     

(2) 

 

The system fails due to degradation when the 

deterioration level exceeds a known and fixed 

threshold L, named breakdown threshold.  

 The system not only fails due to internal 

degradation, but also this is subject to sudden 

shocks which can cause its failure. Sudden shocks 

arrive at the system according to the NHPP 

{𝑁𝑠(𝑡), 𝑡 > 0}. This process shows the dependence 

between both causes of failure, internal degradation 

and sudden shocks since there is an interaction 

between both density function corresponding to 

each cause of failure. That means the intensity of 

the sudden shocks processes at time 𝑡 depends on 

the deterioration level of the system. This 

dependence is reflected in the fact that the system is 

more susceptible to a sudden shock when the 

deterioration level of the system reaches a certain 

fixed threshold 𝑀𝑠. Then, {𝑁𝑠(𝑡), 𝑡 > 0} is an 

NHPP with intensity  

 

   𝜆(𝑡) = 𝜆1(𝑡)𝟏{𝑋(𝑡)≤𝑀𝑠) + 𝜆2(𝑡)𝟏{𝑋(𝑡)>𝑀𝑠), 𝑡 ≥ 0,  

 

where 𝜆1 and 𝜆2 denote two failure rate functions 

which verify 𝜆1 ≤ 𝜆2, for all 𝑡 ≥ 0, where 𝑡 is the 

age of the system and  𝟏{⋅} denote the indicator 

function which equals 1 if the argument is true and 

0 otherwise. A sudden shock provokes the total 

failure of the system. 

 The system is inspected each 𝑇 (𝑇 > 0) time units 

(𝑡. 𝑢. ) with the purpose of checking if the system is 

working or is down. If the system is down, a 

corrective maintenance (CM) is performed. A 

simulation of a CM event is shown in Figure 1. 

 

 
 

Figure 1. A corrective maintenance event 

 

On the other hand, if the system is still working, its 

deterioration level is checked. Let 𝑀 be for 𝑀 < 𝐿, 

the deterioration level from which the system is 

considered as too worn as to be replaced in a 

preventive way. If the system is still working and 

the deterioration level of the system is reached the 

preventive threshold 𝑀, a preventive maintenance 

(PM) is performed and A simulation of a PM event 

is shown in Figure 2. 

 

 
 

Figure 2. A preventive maintenance event 
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Both maintenance tasks, corrective and preventive 

maintenance, imply the replacement of the system 

by a new one with identical conditions to the 

previous one. Otherwise no maintenance action is 

performed. We suppose that the time required to 

perform a maintenance action is negligible. 

 Each maintenance action implies a cost. A CM and 

a PM have associated a cost of 𝐶𝑐 and 𝐶𝑝  monetary 

units (𝑚. 𝑢. ), respectively. An inspection implies a 

cost of 𝐶𝑖 𝑚. 𝑢. In addition, if the system fails, the 

system is down until the next inspection. Each time 

unit that the system is down, a cost 𝐶𝑑 𝑚. 𝑢./𝑡. 𝑢. is 

incurred. We assume that 𝐶𝑐 > 𝐶𝑝 > 𝐶𝑖. 

 Periodic and sequential inspections policies and 

maintenance tasks are performed until a finite 

time 𝑡𝑓 > 0, when finite operating life-time of the 

system finishes and the system cannot be replaced 

by a new one with the same characteristics as the 

previous one. 

Let 𝜎𝑧 be the random variable which is the time to a 

certain level 𝑧 is reached. Denoting 𝐹𝜎𝑧
 the 

distribution function of 𝜎𝑧, we have 

 

   𝐹σ𝑧
(𝑡) = 𝑃[ σz ≤  𝑡] = 𝑃[𝑋(𝑡) ≥ z]=              (3) 

   = ∫ 𝑓α𝑡,β(𝑥) 𝑑𝑥
∞

𝑧

=
Γ(α𝑡, 𝑧β)

Γ(α𝑡)
, 

 

for 𝑡 ≥ 0 where 𝑓𝛼𝑡,𝛽(𝑥) and Γ(𝛼𝑡) are given by (1) 

and (2), respectively, and 

 

   Γ(𝛼, 𝑥) = ∫ 𝑢𝛼−1𝑒−𝑢 𝑑𝑢,
∞

𝑥

 

 
denotes the incomplete gamma function for 𝑥 ≥ 0 

and 𝛼 > 0. 

Let 𝜎𝐿, 𝜎𝑀, and 𝜎𝑀𝑠 be the random variables which 

denote the first time where the degradation levels 𝐿, 

𝑀, and 𝑀𝑠 are reached, respectively, and let  𝐹𝜎𝐿
, 

𝐹𝜎𝑀
, and 𝐹𝜎𝑀𝑠

 be the distribution functions of the 

variables 𝜎𝐿, 𝜎𝑀, and 𝜎𝑀𝑠 given by (3), respectively.  

The probability of the random variable 𝜎𝑧2
− 𝜎𝑧1

 for 

𝑧1 ≤  𝑧2 is provided as 

 

   �̅�𝜎𝑧2−𝜎𝑧1
(𝑡) = 𝑃[𝜎𝑧2

− 𝜎𝑧1
≥ 𝑡] 

   = ∫ ∫ 𝑓𝜎𝑧1 ,𝑋(𝜎𝑧1)(𝑥, 𝑦)
∞

𝑦=𝑧1

∞

𝑥=0

 

   𝐹𝛼𝑡,𝛽(𝑧2 − 𝑦) 𝑑𝑦 𝑑𝑥, 

 

where 𝐹𝛼𝑡,𝛽 denotes the distribution function of the 

density function 𝑓𝛼𝑡,𝛽  given by (1) and 𝑓𝜎𝑧1 ,𝑋(𝜎𝑧1) is 

the joint density function of (𝜎𝑧1
, 𝑋(𝜎𝑧1)) provided 

by Bertoin [1] as 

   𝑓𝜎𝑧1 ,𝑋(𝜎𝑧1)(𝑥, 𝑦) 

   = ∫ 𝟏{𝑧1≤𝑦<𝑧1+𝑠}

∞

0

 𝑓𝛼𝑡,𝛽(𝑦 − 𝑠)𝜇(𝑑𝑠), 

 

where 𝜇(𝑑𝑠) denotes the Lévy measure associated to 

a gamma process with parameters 𝛼 and 𝛽 given by 

 

   𝜇(𝑑𝑠) = 𝛼
𝑒−𝛽𝑠

𝑠
, 𝑠 > 0. 

 

The system is also subject to sudden shocks which 

can cause the system failure. Sudden shocks occur 

randomly in time under an arrival rate which depends 

on the deterioration level of the system. A sudden 

shock provokes the total failure of the system. Let 𝑌 

be the random variable which determines the time to 

the first sudden shock. Let 𝜎𝑀𝑠
= 𝑣 be the time 

where the deterioration threshold 𝑀𝑠. In that way, the 

failure rate of 𝑌 is expressed as  

 

   𝜆(𝑡) = 𝜆1(𝑡)𝟏{𝑋(𝑡)≤𝑀𝑠) + 𝜆2(𝑡)𝟏{𝑋(𝑡)>𝑀𝑠), 𝑡 ≥ 0. 

 

Let 𝐼(𝑣, 𝑡) be the survival function of 𝑌 for 𝑡 ≥ 0, 

knowing that the threshold 𝑀𝑠 is reached at 𝜎𝑀𝑠
= 𝑣. 

That is 

 

   𝐼(𝑣, 𝑡) = 𝑃[𝑌 > 𝑡|𝜎𝑀𝑠=𝑣] 

   = exp { − ∫ 𝜆(𝑧)𝑑𝑧
𝑡

0

} =
�̅�1(𝑣)

�̅�1(0)

�̅�2(𝑡)

�̅�2(𝑣)
, 

 

for 𝑣 ≤  𝑡, where 

 

   𝐹𝑗(𝑡) = exp { − ∫ 𝜆𝑗(𝑧)𝑑𝑧
𝑡

0

}, 

 

with density function 𝑓𝑗(𝑡) for 𝑗 = 1,2. 

 

3. Expected cost analysis in finite-time 
 

Let 𝐶(𝑡) be the maintenance cost of the system at 

time 𝑡 > 0. In most papers of the current literature, 

the optimization criterion in a CBM for a system is 

the asymptotic cost rate (asymptotic cost per time 

unit). 

Let 𝐶∞ be the asymptotic cost rate. Based on the 

“Renewal Theorem”, 𝐶∞ equals the expected cost in 

a renewal cycle divided by the length of the renewal 

cycle. That is 

 

   𝐶∞ =
E[C1]

E[R1]
, 

 

being 𝐶1 and 𝑅1 the cost and the length of the first 

renewal cycle, respectively. 
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However, most systems have a finite operating life-

time since the system cannot always be replaced by a 

new one with the same characteristics as the previous 

one. In that cases, the use of the asymptotic approach 

is questionable and we must analyze the maintenance 

cost in a transient way. 

Let 𝑅𝑗 be the length of the 𝑗-th renewal cycle, with 

𝑗 = 1,2, … , 𝑁(𝑡𝑓), being 𝑁(𝑡𝑓) the total number of 

complete renewal cycles to 𝑡𝑓. Let 𝐶𝑗 be the 

associated cost to the 𝑗-th renewal cycle, for 𝑗 =
1,2, … , 𝑁(𝑡𝑓), and let 𝐷𝑗 be the chronological time of 

the 𝑗-th renewal, for 𝑗 = 1,2, … , 𝑁(𝑡𝑓). That is 

 

   𝐷𝑗 =  ∑ 𝑅𝑛

𝑗

𝑛=1

. 

 

Thus, the length of the 𝑗-th renewal cycle 𝑅𝑗 is given 

by 

 

   𝑅𝑗 = 𝐷𝑗 − 𝐷𝑗−1, 𝑗 = 1,2, … , 𝑁(𝑡𝑓), 

 

for 𝐷0 = 0. A realization of this process is shown in 

Figure 3. 

 

 
 

Figure 3. A realization of a renewal cycle sequence 

 

The total cost to 𝑡𝑓 is the sum of the incurred costs in 

the different 𝑁(𝑡𝑓) complete renewal cycles and the 

incurred cost of the incomplete cycle in the interval 

time (𝐷𝑁(𝑡𝑓), 𝑡𝑓]. That is 

 

   𝐶(𝑡𝑓) =  ∑ 𝐶𝑗 + 𝐶 (𝐷𝑁(𝑡𝑓), 𝑡𝑓)

𝑁(𝑡𝑓)

𝑗=1

, 

 

where 𝐶(𝑡1, 𝑡2) denotes the cost in the interval 

(𝑡1, 𝑡2], and 𝐶(0, 𝑡𝑓) is expressed in a compact way 

as 𝐶(𝑡𝑓). 

Let 𝑅1
𝑀(𝑘𝑇) be the time to the first maintenance 

action, and let 𝑅1,𝑝
𝑀 (𝑘𝑇) and 𝑅1,𝑐

𝑀 (𝑘𝑇)  be the time to 

the first preventive and corrective maintenance 

action, respectively. For a fixed time between 

inspections 𝑇 and, let 𝑃𝑅1

𝑀 (𝑘𝑇), 𝑃𝑅1,𝑝

𝑀 (𝑘𝑇), and 

𝑃𝑅1,𝑐

𝑀 (𝑘𝑇) be the following probabilities 

 

   𝑃𝑅1

𝑀 (𝑘𝑇) = 𝑃[𝑅1
𝑀 = 𝑘𝑇], 

 

   𝑃𝑅1,𝑝

𝑀 (𝑘𝑇) = 𝑃[𝑅1,𝑝
𝑀 = 𝑘𝑇], 

 

   𝑃𝑅1,𝑐

𝑀 (𝑘𝑇) = 𝑃[𝑅1,𝑐
𝑀 = 𝑘𝑇], 

 

for 𝑘 = 1,2, … , ⌊𝑡𝑓/𝑇⌋. Analytically, these 

probabilities are given by  

 

   𝑃𝑅1,𝑝

𝑀 (𝑘𝑇)=(P[(k − 1)T < σM < σ𝑀𝑠
< 𝑘𝑇 < 

   σL, Y > 𝑘𝑇] 
   + P[(k − 1)T < σM < 𝑘𝑇 < σ𝑀𝑠

, Y > 

   𝑘𝑇])𝟏{𝑀≤𝑀𝑠} 

   +(P[(k − 1)T < σ𝑀𝑠
< σM  < 𝑘𝑇 < σL, Y >     (4) 

   𝑘𝑇] 
   +P[σ𝑀𝑠

< (𝑘 − 1)𝑇 < σM < 𝑘𝑇 < σL, Y > 

   𝑘𝑇])𝟏{𝑀>𝑀𝑠}, 

 

𝑃𝑅1,𝑐

𝑀 (𝑘𝑇)=(P[(k − 1)T < σM < σ𝑀𝑠
< σL <

𝑘𝑇, σL < 𝑌] 
+P[(k − 1)T < σM < 𝑌 < 𝑘𝑇, 𝑌 < σ𝑀𝑠

] 

+P[(k − 1)T < σM < σ𝑀𝑠
< 𝑌 < 𝑘𝑇, 𝑌 < σL] 

+P[(k − 1)T < 𝑌 < 𝑘𝑇, 𝑌 < σM])𝟏{𝑀≤𝑀𝑠} 

+(P[(k − 1)T < σ𝑀𝑠
< σL < 𝑘𝑇, σL < 𝑌] 

+P[σ𝑀𝑠
< (𝑘 − 1)𝑇 < σM < σL < 𝑘𝑇, σL < 𝑌] (5) 

+P[σ𝑀𝑠
< (k − 1)T < σM < 𝑌 < 𝑘𝑇, 𝑌 < σ𝐿] 

+P[σ𝑀𝑠
< (k − 1)T < 𝑌 < 𝑘𝑇, 𝑌 < σ𝑀] 

+P[(k − 1)T < σ𝑀𝑠
< 𝑌 < 𝑘𝑇, 𝑌 < σL] 

+P[(k − 1)T < 𝑌 < 𝑘𝑇, 𝑌 < σ𝑀𝑠
])𝟏{𝑀>𝑀𝑠}, 

 

and 

 

   𝑃𝑅1

𝑀 (𝑘𝑇) = 𝑃𝑅1,𝑝

𝑀 (𝑘𝑇) + 𝑃𝑅1,𝑐

𝑀 (𝑘𝑇).               (6) 

 

Let 𝑊𝑇,𝑘
𝑀  be the time the system is down in the 

interval ((𝑘 − 1)𝑇, 𝑘𝑇]. Then,  

 

   𝐸[𝑊𝑇,𝑘
𝑀 ]=(P[(k − 1)T < σM < σ𝑀𝑠

< σL < 

   𝑘𝑇, σL < 𝑌](𝑘𝑇 − 𝜎𝐿) 

   +P[(k − 1)T < σM < 𝑌 < 𝑘𝑇, 𝑌 < σ𝑀𝑠
] 

   (𝑘𝑇 − 𝑌) 

   +P[(k − 1)T < σM < σ𝑀𝑠
< 𝑌 < 𝑘𝑇, 𝑌 < σL] 

   (𝑘𝑇 − 𝑌) 

   +P[(k − 1)T < 𝑌 < 𝑘𝑇, 𝑌 < σM](𝑘𝑇 − 𝑌)) 

   𝟏{𝑀≤𝑀𝑠} 

   +(P[(k − 1)T < σ𝑀𝑠
< σL < 𝑘𝑇, σL < 𝑌]          (7) 

   (𝑘𝑇 − 𝜎𝐿) 
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Time0

0

t f

Degradation level

. .

.CM

CMPM

iT jT kT

L

M

Y



Journal of Polish Safety and Reliability Association 

Summer Safety and Reliability Seminars, Volume 7, Number 1, 2016                     

 

 

 

17 

   +P[σ𝑀𝑠
< (𝑘 − 1)𝑇 < σM < σL < 𝑘𝑇, σL <

   𝑌](𝑘𝑇 − 𝜎𝐿) 

   +P[σ𝑀𝑠
< (k − 1)T < σM < 𝑌 < 𝑘𝑇, 𝑌 <

   σ𝐿] (𝑘𝑇 − 𝑌) 

   +P[σ𝑀𝑠
< (k − 1)T < 𝑌 < 𝑘𝑇, 𝑌 < σ𝑀] 

   (𝑘𝑇 − 𝑌) 

   +P[(k − 1)T < σ𝑀𝑠
< 𝑌 < 𝑘𝑇, 𝑌 < σL] 

   (𝑘𝑇 − 𝑌) 

   +P[(k − 1)T < 𝑌 < 𝑘𝑇,\ 𝑌 < σ𝑀𝑠
](𝑘𝑇 −

   𝑌))𝟏{𝑀>𝑀𝑠}. 

 

Let 𝐸[𝐶𝑇
𝑀(𝑡)] be the expected cost at time 𝑡 > 0 with 

a time between inspections 𝑇 and a preventive 

threshold 𝑀. For 𝑡 < 𝑇, we have 

 

   𝐸[𝐶𝑇
𝑀(𝑡)] = 𝐶𝑑 ∫ 𝑓𝜎𝑀𝑠

𝑡

0

(𝑢) 

   ∫ [−
𝜕

𝜕𝑣
(𝐼(𝑢, 𝑣)�̅�𝜎𝐿−𝜎𝑀𝑠

(𝑣 − 𝑢))]
𝑡

𝑢

 

   (𝑡 − 𝑣) 𝑑𝑣 𝑑𝑢                 (8) 

   +𝐶𝑑 ∫ 𝑓1

𝑡

0

(𝑢)�̅�𝜎𝑀𝑠
(𝑢)(𝑡 − 𝑢) 𝑑𝑢. 

 

For 𝑡 ≥ 𝑇, 𝐸[𝐶𝑇
𝑀(𝑡)] fulfills the following recursive 

equation 

 

   𝐸[𝐶𝑇
𝑀(𝑡)] = ∑ 𝐸[𝐶𝑇

𝑀(𝑡 − 𝑘𝑇)]

⌊𝑡/𝑇⌋

𝑘=1

 

   𝑃𝑅1

𝑀 (𝑘𝑇) + 𝐺𝑇
𝑀(𝑡)                 (9) 

 

where 

 

   𝐺𝑇
𝑀(𝑡) = (⌊𝑡/𝑇⌋𝐶𝑖(𝑘 − 1) + 𝐶𝑑𝐸[𝑊⌊𝑡/𝑇⌋

𝑀 ]) 

   (1 − ∑ 𝑃𝑅1

𝑀 (𝑘𝑇)

⌊𝑡/𝑇⌋

𝑘=1

) 

   + ∑ (𝐶𝑝 + 𝐶𝑖(𝑘 − 1))

⌊𝑡/𝑇⌋

𝑘=1

𝑃𝑅1,𝑝

𝑀 (𝑘𝑇) 

   + ∑ (𝐶𝑐 + 𝐶𝑖(𝑘 − 1))

⌊𝑡/𝑇⌋

𝑘=1

𝑃𝑅1,𝑐

𝑀 (𝑘𝑇) 

   + ∑ 𝐶𝑑𝐸[𝑊𝑇,𝑘
𝑀 ]

⌊𝑡/𝑇⌋

𝑘=1

𝑃𝑅1,𝑐

𝑀 (𝑘𝑇), 

 

with initial conditions 𝐸[𝐶𝑇
𝑀(0)] = 0 and 𝐺𝑇

𝑀(0) =
0, time between inspections 𝑇 (𝑡. 𝑢.) and preventive 

threshold 𝑀, where 𝑃𝑅1,𝑝

𝑀 (𝑘𝑇), 𝑃𝑅1,𝑐

𝑀 (𝑘𝑇), and 

𝑃𝑅1

𝑀 (𝑘𝑇) are the probabilities given by (4), (5), and 

(6), respectively and 𝐸[𝑊𝑇,𝑘
𝑀 ] denotes the expected 

downtime in ((𝑘 − 1)𝑇, 𝑘𝑇] given by (7). 

For fixed 𝑇 and variable 𝑀,  

 

   𝐸 [𝐶𝑇

𝑀𝑜𝑝𝑡(𝑡)] = 𝑚𝑖𝑛{0 ≤ M ≤ L;  𝐸[𝐶𝑇
𝑀(𝑡)]}. 

 

4. Illustrative example 
 

In this section we compute an estimation of the 

expected cost rate in finite-time horizon by using the 

recursive formula given in (9). To this end, we 

consider a system subject to a degradation process 

whose growth is modeled under a gamma process 

with parameters 𝛼 = 𝛽 = 0.1. In this way, being 

𝑋(𝑡) the deterioration level of the system at time 𝑡, 

the density function of 𝑋(𝑡) is given by 

 

   𝑓0.1t,0.1(x) =
0.10.1𝑡

Γ(0.1t)
𝑥0.1(𝑡−1)𝑒−0.1𝑥, 𝑥 > 0, 

 

where 𝛤 (⋅) is given by (2). 

The system fails when the deterioration level of the 

system reaches the breakdown threshold 𝐿 = 30. The 

system can also fail due to a sudden shock. Both 

causes of failure are dependent. This dependence is 

reflected in the fact that the failure rate function of 

the sudden shock processes depends on the 

degradation process. Thus, the system is more 

susceptible to a sudden shock when the deterioration 

level of the system reaches a certain threshold 𝑀𝑠. In 

this example, we assume that 𝑀𝑠 = 20 and the 

sudden shock processes is modelled under an NHPP 

with intensity 

 

   𝜆(𝑡) = 0.01 ⋅ 𝟏{𝑋(𝑡)≤𝑀𝑠) + 0.1 ⋅ 𝟏{𝑋(𝑡)>𝑀𝑠), 𝑡 ≥ 0. 

 

Under these conditions, the expected time to the 

failure due to deterioration is 𝐸[𝜎𝐿] = 34.0335 𝑡. 𝑢. 
and the expected time to the failure due to a sudden 

shock is 𝐸[𝑌]  = 28.3556 𝑡. 𝑢. 
In addition, we assume the cost sequence 𝐶𝑐 =
100 𝑚. 𝑢., 𝐶𝑝 = 50 𝑚. 𝑢., 𝐶𝑑 = 25 𝑚. 𝑢./𝑡. 𝑢., and 

𝐶𝑖 = 2 𝑚. 𝑢. Periodical and sequential inspection 

policies and maintenance tasks are performed until a 

finite time 𝑡𝑓 = 10. 

We consider a time between inspections 𝑇 = 2.5 𝑡. 𝑢. 
Based on (8), if 𝑡 < 2.5, the expression 

 

   𝐸[𝐶2.5
𝑀 (𝑡)] = 𝐶𝑑 ∫ 𝑓𝜎𝑀𝑠

𝑡

0

(𝑢) 

   ∫ [−
𝜕

𝜕𝑣
(𝐼(𝑢, 𝑣)�̅�𝜎𝐿−𝜎𝑀𝑠

(𝑣 − 𝑢))]
𝑡

𝑢

(𝑡 − 𝑣) 𝑑𝑣 𝑑𝑢 

   +𝐶𝑑 ∫ 𝑓1

𝑡

0

(𝑢)�̅�𝜎𝑀𝑠
(𝑢)(𝑡 − 𝑢) 𝑑𝑢. 
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is estimated by using Monte Carlo simulation with 

10000 realizations in MATLAB software. 

If 𝑡 ≥  2.5, the value of 𝐸[𝐶2.5
𝑀 (𝑡)] given by Equation 

(9) involves the calculus of 𝑃𝑅1,𝑝

𝑀 (2.5𝑘), 𝑃𝑅1,𝑐

𝑀 (2.5𝑘), 

𝑃𝑅1

𝑀 (2.5𝑘), and 𝐸[𝑊𝑇,2.5
𝑀 ] for 𝑘 = 1,2, … , ⌊𝑡/2.5⌋. 

Taking 𝐿 = 30, we get a grid of size 30 discretizing 

the set (0,30] into 30 equally spaced points from 1 

to 30 for the preventive threshold 𝑀. Let 𝑀𝑖 be the 𝑖-
th value of 𝑀, which corresponds to the 𝑖-th value of 

the grid obtained previously, for 𝑖 = 1,2, … ,40. 

For fixed 𝑇 = 2.5 and for each fixed 𝑀𝑖, we obtain 

with MATLAB software 50000 simulation results 

for (𝑅1, 𝐼1, 𝑊𝑑), where 𝑅1 is the time to the first 

replacement (corrective or preventive), 𝐼1 

corresponds to the first maintenance action 

performed (corrective or preventive), and 𝑊𝑑 

denotes the downtime up to the first maintenance 

action. If the first maintenance action is a preventive 

maintenance, 𝑊𝑑  equals 0 since the system is still 

working when the replacement is performed. 

With these simulations and applying Monte Carlo 

method, we obtain  �̃�𝑅1,𝑝

𝑀 (2.5𝑘), �̃�𝑅1,𝑐

𝑀 (2.5𝑘), 

�̃�𝑅1

𝑀 (2.5𝑘), and �̃�[𝑊𝑇,2.5
𝑀 ], which correspond to the 

estimations for  𝑃𝑅1,𝑝

𝑀 (2.5𝑘), 𝑃𝑅1,𝑐

𝑀 (2.5𝑘), 𝑃𝑅1

𝑀 (2.5𝑘), 

and 𝐸[𝑊𝑇,2.5
𝑀 ] for 𝑘 = 1,2, … , ⌊𝑡/2.5⌋ given by 

Equations (4), (5), (6), and (7), respectively. 

For each 𝑀𝑖 and 𝑇 = 2.5 𝑡. 𝑢., we estimate the 

expected cost in finite-time horizon at time 𝑡 for 𝑡 ≥
 2.5 throughout the following recursive expression 

 

   �̃�[𝐶2.5
𝑀 (𝑡)] = ∑ �̃�[𝐶2.5

𝑀 (𝑡 − 2.5𝑘)]

⌊𝑡/2.5⌋

𝑘=1

 

   �̃�𝑅1

𝑀 (2.5𝑘) + �̃�2.5
𝑀 (𝑡) 

 

where 

 

   �̃�2.5
𝑀 (𝑡) = (⌊𝑡/2.5⌋𝐶𝑖(𝑘 − 1) + 𝐶𝑑�̃�[𝑊⌊𝑡/2.5⌋

𝑀 ]) 

   (1 − ∑ �̃�𝑅1

𝑀 (2.5𝑘)

⌊𝑡/2.5⌋

𝑘=1

) 

   + ∑ (𝐶𝑝 + 𝐶𝑖(𝑘 − 1))

⌊𝑡/2.5⌋

𝑘=1

�̃�𝑅1,𝑝

𝑀 (2.5𝑘) 

   + ∑ (𝐶𝑐 + 𝐶𝑖(𝑘 − 1))

⌊𝑡/2.5⌋

𝑘=1

�̃�𝑅1,𝑐

𝑀 (2.5𝑘) 

   + ∑ 𝐶𝑑𝐸[𝑊2.5,𝑘
𝑀 ]

⌊𝑡/2.5⌋

𝑘=1

�̃�𝑅1,𝑐

𝑀 (2.5𝑘), 

 

with initial conditions �̃�[𝐶2.5
𝑀 (0)] = 0 and  

�̃�2.5
𝑀 (0) = 0. 

Let �̃�∗[𝐶2.5
𝑀𝑖(10)] be the expected cost rate in finite-

time horizon at time 𝑡𝑓 = 10 for 𝑇 = 2.5 𝑡. 𝑢. and 

variable 𝑀, that is �̃�∗[𝐶2.5
𝑀𝑖(10)] = �̃�[𝐶2.5

𝑀𝑖(10)]/10. 

Figure 4 shows the value of �̃�∗[𝐶2.5
𝑀 (10)] for each 

value of 𝑀. 

 

 
 

Figure 4. Expected cost rate in finite-time horizon at 

time 𝑡𝑓 = 10 𝑡. 𝑢. for different values of 𝑀 

 

Based on Figure 4, the value of 𝑀 which minimize 

the expected cost rate in finite-time horizon at time 

𝑡𝑓 = 10 𝑡. 𝑢. is reached at 𝑀𝑜𝑝𝑡 = 27 with a 

expected cost rate of 2.9281 𝑚. 𝑢./𝑡. 𝑢.  
Now, we focus on the influence of different model 

parameters on the solution. Firstly, a sensitivity 

analysis for the gamma process parameters are 

performed. Later, the parameters 𝜆1 and 𝜆2 are 

considered. 

The values of the gamma process are modified under 

the following specifications: 

 

   𝛼(𝑣𝑖%) = 𝛼 [1 +
𝑣𝑖

100
], 

                (10) 

   𝛽(𝑣𝑗%) = 𝛽 [1 +
𝑣𝑗

100
], 

 

where 𝑣𝑖 and 𝑣𝑗 are the 𝑖-th and 𝑗-th positions of the 

vector 𝒗 = (−10, −5, −1,0,1,5,10), respectively. 

Then, the value of the parameters 𝛼 and 𝛽 are 

simultaneous and independently modified for 

increasing and decreasing changes. 

Let �̃�∗ [𝐶2.5,𝛼(𝑣𝑖%),𝛽(𝑣𝑗%)

𝑀𝑖 (10)] be the minimal value of 

the expected cost rate at time 𝑡𝑓 = 10 for different 

values of 𝑀 with fixed 𝑇 = 2.5 𝑡. 𝑢. obtained by 

varying simultaneously 𝛼 and 𝛽 according to the 

specifications given in (10). Then, a relative 

variation percentage  𝑉𝛼(𝑣𝑖%),𝛽
(𝑣𝑗%)

(10) is defined as 
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�̃�∗ [𝐶2.5

𝑀𝑜𝑝𝑡(10)] − �̃�∗ [𝐶2.5,𝛼(𝑣𝑖%),𝛽(𝑣𝑗%)

𝑀𝑖 (10)]

�̃�∗ [𝐶2.5

𝑀𝑜𝑝𝑡(10)]
, 

 

where �̃�∗ [𝐶2.5

𝑀𝑜𝑝𝑡(10)] represents the minimal 

expected cost rate calculated previously with initial 

parameters as �̃�∗ [𝐶2.5

𝑀𝑜𝑝𝑡(10)] = 2.9281 m. u./t. u. 

For fixed 𝑖 and 𝑗, 𝑉𝛼(𝑣𝑖%),𝛽
(𝑣𝑗%)

(10) measures the 

relative difference between the current optimal cost 

and the optimal cost that has been calculated by 

using the modified parameter values. If this quantity 

is multiplied by 100, the result is expressed in 

percentage. Values closer to zero show a less 

influence on the solution. 

Table 1 shows the relative variation percentages with 

a shaded gray scale. Each cell represents 

𝑉𝛼(𝑣𝑖%),𝛽
(𝑣𝑗%)

(10) multiplied by 100. Darker colors of 

cells denote a higher relative variation percentage. 

 

Table 1. Relative variation percentages for the 

expected cost rate for the gamma process parameters 
 

 

By modifying ± 1% around 𝛼= 𝛽 = 0.1, the relative 

variation percentages are small. The results also 

show that the relative variation percentages are lower 

in the diagonal of the table. That means, when the 

parameters 𝛼 and 𝛽 are modified in the same 

direction and magnitude.  

Similarly, the values of the parameters 𝜆1 and 𝜆2  are 

modified according to the following specifications: 

 

𝜆1(𝑣𝑖%) = 𝜆1 [1 +
𝑣𝑖

100
], 

                (11) 

𝜆2(𝑣𝑗%) = 𝜆2 [1 +
𝑣𝑗

100
], 

 

Let �̃�∗ [𝐶2.5,𝜆1(𝑣𝑖%),𝜆2(𝑣𝑗%)

𝑀𝑖 (10)] be the minimal 

expected cost rate obtained by varying the 

parameters 𝜆1 and 𝜆2 simultaneously as in the 

scheme given in (11). Now, the relative variation 

percentage  𝑉𝜆1(𝑣𝑖%),𝜆2(𝑣𝑗%)
(10) is given by 

 

   

�̃�∗ [𝐶2.5

𝑀𝑜𝑝𝑡(10)] − �̃�∗ [𝐶2.5,𝜆1(𝑣𝑖%) 𝜆2(𝑣𝑗%)

𝑀𝑖 (10)]

�̃�∗ [𝐶2.5

𝑀𝑜𝑝𝑡(10)]
. 

 

The relative variation percentages are presented in 

Table 2.  

 

Table 2. Relative variation percentages for the 

expected cost rate for the parameters λ1 and λ2 
 

 λ2,( 10 %) λ2,( 5 %) λ2,( 1 %) λ2 λ2,(1 %) λ2,(5 %) λ2,(10 %) 

λ1,( 10 %) 4.3506 3.9377 3.6078 3.0416 3.3862 2.6785 2.9063 

λ1,( 5 %) 3.4507 1.8743 1.5099 2.3274 2.3001 0.6380 0.4248 

λ1,( 1 %) 1.1246 1.2329 0.1356 0.1581 0.6079 0.6906 0.7640 

λ1 0.2193 1.4839 0.2172 0.0000 0.9918 1.4924 0.7831 

λ1,(1 %) 0.1004 0.1048 1.4719 0.2848 0.1216 1.3644 2.1382 

λ1,(5 %) 1.2025 2.9152 1.7250 2.5006 2.6273 2.1734 2.8247 

λ1,(10 %) 3.1973 3.6826 3.9350 5.0589 4.7949 4.5183 4.9165 

 
Once again, by modifying ± 1% around 𝜆1 = 0.01 

and 𝜆2 = 0.1, the relative variation percentages are 

small. Thus, the results show that the parameter 𝜆1 

has greater effects on 𝑉𝜆1(𝑣𝑖%),𝜆2(𝑣𝑗%)
(10) than the 

parameter 𝜆2. 

 

5. Conclusions and further works 
 

In this paper, a CBM strategy in finite-time horizon 

for a system is considered. This system is subject to a 

degradation process modelled under a gamma 

process and sudden shock processes following an 

NHPP. We consider that both causes of failure are 

dependent. This dependence is reflected in the fact 

that the system is more susceptible to external shocks 

when the deterioration level of the system reaches a 

certain threshold. In order to complete the study, a 

numerical example is proposed in order to illustrate 

the estimation of the expected cost rate in finite-time 

horizon by using a method which combines a 

recursive method and Monte Carlo simulation. In 

addition, the robustness of the solution is analyzed 

when we vary different parameters of the model. 

A further possible extension of this work could be 

studying the expected cost rate in finite-time horizon 

varying the time between inspections instead of the 

preventive threshold. Other possible extension of this 

work is considering a system subject to multiple 

processes of deterioration completed with analyzing 

the associated standard deviation of the expected cost 

rate in finite-time horizon. 
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