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Abstract 
 

The aim of this paper is to present the concept of the supply chain resilience assessment in the case of 

disruptive events occurrence. Firstly, the methods for modelling uncertainty in terms of their application to 

assess this type of risk will be discussed, and then the concept of a fuzzy logic expert model enabling a 

quantitative assessment of supply chain resilience will be presented. Finally  the structure of the simulation 

model has been proposed, which consists of the partial resilience models, namely: security, survivability and 

recovery ones. In the course of  the simulation process, it is possible to identify the rules involved in system 

output as well as changes in resilience level which account for changes in inputs values. 

 

1. Introduction 
 

The issue of assessing the risk of disruption in supply 

chains, in particular global ones, has been becoming 

more and more important in recent years. It results 

from the efforts to minimize costs by continuous 

processes of Lean Manufacturing, Lean Logistics, 

and Lean Management and the increasing number 

and intensity of external threats. Reducing the 

number of suppliers according to the "4S" principle 

(a Single Source Supply Strategy), introducing Just 

In Time Manufacturing system to a greater extent, 

minimizing the level of minimal buffers, and 

configuring tightly connected supply chains have 

resulted in a significant increase in the level of risk 

of process continuity. This risk is greater when the 

information about the possible risks that may 

interfere with the supply process and their possible 

impact is burdened with greater uncertainty. 
In the case of predictable, recurring threats, it is 

possible to "tame" uncertainty, and at the same time 

limit risk, by means of statistical methods, based on 

the probability calculus, the theory of stochastic 

processes, and mathematical statistics. By contrast, 

so far there have been no effective methods and tools 

useful to assess the risk associated with a new type of 

threat of unique character, related to the forces of 

nature, or intentional, hostile interference of the 

human factor. Untypical risks are especially 

dangerous, and their impact can be adverse for all 

people participating in the implementation of the 

undertaking. These risks are sometimes called "Black 

Swan" events and have the following characteristics 

 [14]: 

 Uniqueness, going beyond expectations based on 

previous experiences and a priori unpredictability  

 Extremely large impact of the event and  

 A possibility to explain the reasons and the 

method of forecasting after its occurrence  

(a posteriori).  

The effect of the "Black Swan" is also described in 

the literature as LSLIRE (Large Scale, Large Impact 

Rare Event). Modelling of such as phenomena 

requires other uncertainty description methods than 

in the case of common and easily identifiable threats. 

Thus, in the first place on the basis of information 

theory, the formalized languages and monotonic 

measures will be analyzed, to provide adequate 

means of the uncertainty description for occurrence 

of this untypical phenomena. 
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2. Methods for uncertainty modelling 
 

2.1. Theories of uncertainty 
 

The starting point for considering uncertainty may be 

GIT – the Generalized Information Theory, proposed 

by G.J. Klir [6]. Compared to the classical 

information theory created by C.E. Shannon [11], 

based on concepts of probability and entropy, it has a 

much more universal character.  GIT is the result of 

two significant mathematical generalizations: 

 The classical theory of additive measures to the 

theory of monotone measures and 

 The classical theory of crisp sets to a more 

general theory of fuzzy sets. 

 

The first generalization, which started in the early 

1950s, extends additive measures to less restrictive 

monotonic measures, characterized by more diverse 

features. The second one, introduced in the 1960s, 

expands the language of the classical set theory into 

a more universal language of fuzzy sets, allowing the 

use of vague linguistic terms. The theory of 

uncertainty of a given type is formed by choosing the 

appropriate language (e.g. based on the theory of 

fuzzy sets) and expressing uncertainty by means of 

specific monotone measures (e.g. based on the theory 

of probability).   

The classical information theory is based on the 

theory of probability or alternatively, the theory of 

possibility, applied to classical sets. And applying 

the probability function or possibility function to 

standard fuzzy sets enables the creation of new, more 

general theories of information. Similarly, remaining 

at classical sets, we can apply various non-additive 

monotone measures (e.g. Sugeno’s   measure, 

Dempster-Shafer measure, Choquet measure of n-th 

order or the general lower and upper probability 

function), creating new theories. 

There are, therefore, a lot of formal theories of 

uncertainty. Each of them is more or less general, 

and any two theories at the same level of generality 

may not be mutually comparable. Each particular 

problem requires the use of such a theory, which 

would make it possible for a decision-maker to 

express his or ignorance and to protect against 

ignoring any information, relevant in a given 

situation. Currently, within the framework of the so-

called imperfect knowledge trend, efforts are made to 

create GTU – the Generalized Theory of Uncertainty, 

which would go beyond the classical theory of 

probability and classical set theory, would 

characterize each type of uncertainty and work at 

four levels: formalization, computational tools, 

measurement and methodology [21]. 

In each of the above theories, uncertainty is 

represented by the so-called uncertainty function, 

assigning each possible realization from the set a 

number from the interval [0,1], which determines the 

degree of certainty that a specific opportunity arises. 

Examples of uncertainty functions include: the 

probability function, the possibility function, the 

function of faith and credibility or function of the 

lower and upper probability. In each theory, the 

uncertainty function meets certain requirements that 

differentiate the various theories. The measure of 

uncertainty for a specific type of theory is the 

functional that assigns a non-negative real number to 

each function. Typical examples of uncertainty 

measures are the Shannon entropy [11] and Hartley 

measure. A functional representing the uncertainty 

measure must meet a number of requirements. 

Admittedly, mathematical formalization of each of 

the requirements depends on the theory used, 

however, these requirements can be represented in 

the general form as:  

 Additivity - the uncertainty in the total data 

representations is equal to the sum of 

uncertainty of individual representations of data, 

 Subadditivity - the uncertainty in the total 

representation of data cannot be greater than the 

total uncertainty of  the sum of individual data 

representation, 

 Range- the uncertainty is contained in the 

interval (0, M), where 0 is related to the 

function that describes the complete certainty 

and M depends on the size of the set used and 

the selected unit of measure, 

 Continuity – the functional must be continuous, 

 Expansibility - developing a set of alternatives 

by adding alternatives cannot change the level 

of uncertainty 

 Consistency - if uncertainty can be calculated in 

different ways (allowed in the method), the 

result must be the same, 

 Monotonocity - if the data form an increasing 

series, their measure of uncertainty also 

increases and vice versa, if the data in a series 

are decreasing, uncertainty also decreases, 

 Coordinate invariance - a measure of 

uncertainty cannot change with the isometric 

coordinate transformations. 

 

These requirements must be fulfilled by all types of 

uncertainty that exist in the theory. Uncertainty of 

information can be expressed through measures of 

probability, possibility and necessity, faith and 

credibility. Measures of possibility, necessity, faith 

(conceivability) and credibility are dual, i.e., if the 

event is necessary, the counter-event is impossible, if 

the event is credible, the counter- event is 

inconceivable. 
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There are three main principles of uncertainty 

management:  

 The principle of minimum uncertainty – we 

accept only those solutions for which the loss of 

information (resulting from simplifications, 

transformations conflict solutions) is minimal, 

i.e. we choose solutions with a minimum of 

uncertainty, 

 The principle of maximum uncertainty - we 

accept all solutions, after making sure that the 

information that raises doubt is reliable, 

 The principle of uncertainty invariance - the 

level of uncertainty should be kept at each 

transition from one mathematical approach to 

another. 

 

2.2. Formalized languages 
 

Currently, three formalized languages are used to 

describe sets: CST – the Classical Sets Theory, SFST 

– the Standard Fuzzy Sets Theory and NFST – the 

Nonstandard Fuzzy Sets Theory. The first two 

theories are thoroughly described in the literature, are 

well-developed and widely used, while the last one is 

a relatively new theory and not yet fully developed. 

 

2.2.1. The classical set theory 
 

In the classical set theory, it is assumed that each 

element of the considered space X belongs to either 

set A  ( Ax )  defined on the space X ( )(XPA ), 

or it complements the set A ( Ax ), that is, no 

element can belong simultaneously to both sets. The 

characteristic function (membership function) of the 

set  A is 

 

   }1,0{: XmA  and 









Ax

Ax
mA

for    0

for     1
   (1) 

for each Xx  .     

 

Two sets are equal only when every element of one 

of them is the element of the other and vice versa. 

Two sets of the same number of elements are called 

equinumerous.  

The interference based on binary logic and classic 

sets is simple and unambiguous, but in many cases 

insufficient to describe the complex reality. 

 

2.2.2. The standard fuzzy sets theory 
 

The concept of fuzzy sets was introduced by L.A. 

Zadeh [19] as a generalization of the classical set 

theory. In the case of fuzzy sets, each element of 

space X can belong partially to a set A, and partly to 

its complement A . Fuzzy sets are defined by the 

membership function corresponding to the function 

characteristics of classical sets. Each element  of the 

set X has the assigned value that defines the degree 

of membership to the fuzzy set. Membership of 

standard fuzzy sets is in the range [0,1] and if the 

maximum value equals 1, we deal with normal fuzzy 

sets. Thus, the membership function of the set X is : 

 

   ]1,0[: XA       (2) 

 

We can distinguish three cases here:  

a) 1)( xA - means full membership in the fuzzy 

set A; 

b) 0)( xA - means the lack of membership in the 

fuzzy set A; 

c) 1)(0  xA - means a partial membership in the 

fuzzy set A. 

A fuzzy set A is contained in the fuzzy set B only 

when )()( xx BA    for each Xx , and the 

fuzzy set A equals the fuzzy set B only when.  

)()( xx BA   . The complement of the set A is a 

fuzzy set A  with a membership function. 

AA
 1 . 

Although the inference based on the fuzzy set theory 

and multi-valued logic is more complex and less 

intuitive, however thanks to widely available 

computer tools supporting the process of the fuzzy 

inference it is becoming more common [7]. 

 

2.3. Monotonic measures 
 

2.3.1. Additive measures - the “numeric” 

probability 
 

A classic tool in studying uncertainty is the 

probability theory. Applying it leads to assumptions, 

such as that the rate of uncertainty should be 

measurable (using simple methods) and have a 

numerical rating. Another assumption used in the 

studies of uncertainty is the independence of the 

system components. Uncertainty and uncertain 

information are modelled in this case also by a 

probability distribution. For a finite set X of mutually 

exclusive alternatives, a probability distribution 

function for each  Xx  is 

 

   ]1,0[)( xp  



Xx

xp 1)(      (3) 
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2.3.2. Non-additive measures 
 

A characteristic of non-additive measures is that the 

probability of the sum of mutually exclusive 

(independent) events does need not to equal 

probability of these events. This reflects a subjective 

assessment of probability by a decision-maker, 

which is not necessarily an objective probability. 

This condition is fulfilled by measures based on the 

possibility theory and the imprecise theory of 

probabilities. 

 

A) The possibility theory 

The concept of possibility and necessity is the oldest 

and most fundamental concept of measures, derived 

from the ideas of Aristotle. However, the theoretical 

basis for this concept was developed  by L.A. Zadeh 

in the 1970s [20]. It is assumed that there is a set of 

mutually exclusive alternatives X. The basic 

information that we can obtain on the set X (based on 

different types of tests) is the information that certain 

alternatives from a set X are impossible. After 

rejecting impossible alternatives, we obtain a set of 

possible alternatives E, which is a subset of X. The 

characteristic function of the set E (also known as the 

basic function of possibility) is: 

 

   









Ex

Ex
xrE

for    0

for    1
)(      (4) 

 

A function of possibility defined on a power set  

P(X) is given by the formula:  

 

   )(max)( xrAPos E
Ax

E


  for each )(XPA    (5) 

 

A real alternative may belong to a set A if A contains 

at least one element of the set E. Functions of 

necessity can be formulated as follows: 

 

   )(1)( APosANec EE   for each )(XPA   (6) 

 

The real alternative is necessary in A only when it is 

not possible that it is in a completion of A. An 

uncertainty measure of a finite set of possible 

alternatives E is Hartley’s measure expressed by the 

formula: 

EPosH E 2log)(        (7) 

 

B) The theory of imprecise probabilities 

The theory of imprecise probabilities is used for 

experimental data burdened with uncertainty, for 

which it is difficult or even impossible to calculate 

the probability characteristics. A characteristic of all 

imprecise probabilities inaccuracy is that the data can 

be described by means of the low or high probability 

functions ( g  i g ). Functions g  i g  are regular 

monotonic measures and they fulfil the following 

conditions [15]: 

 

   



Xx

xg 1})({ , 



Xx

xg 1})({     (8) 

 

The upper probability is a subadditive measure, and 

the lower probability is a superadditive measure. The 

classic probability measure is a special case of 

imprecise probabilities, for which lower and upper 

probabilities are equal. 

On the basis of mentioned above theories, it seems to 

be logical to describe the uncertainty of prevalence 

of the rare, difficult to predict events, by a use of the 

standard fuzzy sets theory as the formalized 

language, and the basic function of possibility as the 

non-additive monotone measure. This method of the 

uncertainty description was adopted in the next part 

of this work, as the basis for the design of an expert 

model to assess the supply chains resilience. 

 

3. Modelling supply chain resilience 
 

Supply chain resilience is a multi-dimensional 

phenomenon. Supply networks are becoming more 

complex, dynamically changing nets. A supply chain 

could be very lean and efficient; if it is unable to find 

an alternative route of delivery quickly, it will be 

susceptible to system shocks and disturbances. Many 

of the processes of supply chain management may 

unwittingly contribute to the creation of a system 

that, while responsive and efficient in the steady 

state, is so tightly coupled that it cannot prevent the 

escalation of threats and also has insufficient slack to 

cope with the demands of the event once it 

occurs [9]. 

MIT research group [12], [13] defines supply chain 

resilience as, “the ability to react to unexpected 

disruption and restore normal supply network 

operations.” Sheffi  examined the ways in which 

companies can recover from high-impact disruptions 

and focused on actions to lower vulnerability and 

increase resilience. These include: 

- Reducing likelihood of disruptions through 

monitoring and detecting weakest signals, 

demand-responsive supply chains, supply-chain 

wide collaboration, redundancy;  

- Operational flexibility through standardization of 

parts facilitating interchangeability, postponement 

or mass customization strategy to respond to 

unpredictable demand changes, customer and 

supplier relation management and multiple 

sourcing.  
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Christopher and Peck [4] defined supply chain 

resilience as “the ability of the supply chain to return 

to its original state or move to a new, more desirable 

state after being disturbed”. So most of the 

definitions assume resilience as the ability to deal 

with unexpected events successfully after they have 

actually happened. M. Christopher and H. Peck  

notified the five broad elements of supply chain 

resilience: 

- Supply chain understanding (pitch points, 

bottlenecks, critical path); 

- Supply base strategy (risk awareness, audited 

monitoring); 

- Design principles (keep several option open! – 

efficiency vs. redundancy, decoupling point, 

critical nodes); 

- Collaboration (knowledge shared by partners, 

Supply Chain Event Management - SCEM); 

- Supply chain agility (visibility, communication, 

velocity, acceleration); 

- Supply chain risk management culture (nothing is 

possible without leadership from the top of the 

organization!). 

Supply chain resilience is the ability and capacity to 

withstand systemic discontinuities and adapt to new 

risk environments. So supply chain resilience can be 

defined as not only the ability to maintain control 

over performance variability in the face of 

disturbance but also a property of being adaptive and 

capable of sustained response to sudden and 

significant shifts in the environment.  

On the basis of these definitions, we propose a model 

of supply chains resilience in the form of a 

multidimensional vector R, which consists of three 

basic attributes constituting the resilience of the 

whole system: security (SE), survivability (SU) and 

recovery (RE) in the presence of the disruptive 

events.  

 

   R = {SE, SU, RE}      (9) 

 

Security (SE) – protection of a system from 

malicious intent, is displayed by:  

- Confidentiality (CON) of information to 

unauthorized users,  

- Integrity (INT) - impossibility of introducing 

changes into the system by unauthorized users, 

and  

- Accessibility (ACC) for authorized users only. 

Survivability (SU) - the capability of a system to 

fulfil its mission, in a timely manner, in the presence 

of attacks, failures, or accidents, is described by: 

- Detectability (DET) - early threats recognition, 

supervision and monitoring, 

- Robustness (ROB) - resistance and redundancy, 

- Adaptability (ADA) - flexibility, agility, fault 

tolerance. 

Recovery (RE) – failure removal (restoration) in 

acceptable time and costs, is divided into: 

- Susceptibility to repair (SUS) and 

- Availability of Repair Resources (ARR). 

 

Methods of parameters description with use of 

linguistic variables allow using fuzzy sets as a tool 

for building expert system, in which linguistic 

variables are used as inputs variables of the system. 

The application of fuzzy sets theory in this case is 

reasonable because expert’s knowledge can be used 

to build a suitable rule base [2], [3]. Expert 

knowledge on the impact of the various parameters 

on result is expressed in the form of “if … then” 

rules. The knowledge encoded in a rule base is 

derived from human experience and intuition as well 

as on the basis of theoretical and practical 

understanding of the properties of the studied object. 

The main task of this deduction system is to calculate 

the approximate value of the output variable based 

on the share of each rule from the rule base with an 

appropriate factor determining the “validity” of the 

rule. Fuzzy logic based systems are a kind of expert 

system built on a knowledge base that contains 

inference algorithms in the form of a rule base. What 

distinguishes fuzzy inference in terms of concept 

from conventional inference is the lack of an 

analytical description. The approximate inference 

mechanism transforms knowledge from the rule base 

into a non-fuzzy form. The non-fuzzy form of the 

result is obtained in the process of defuzzification. 

Defuzzification is interpreting the membership 

degrees of fuzzy sets into a real value. The 

correctness of selection of rules as well as the shape 

and ranges of the membership function is verified 

with a rules viewer and simulation. The rules viewer 

displays a roadmap of the whole fuzzy inference 

process. It also shows how the shape of certain 

membership functions influences the overall result. 

The software WinFACT [18] was used for building a 

system for evaluating resilience level. WinFACT 

provides FLOP (Fuzzy Logic Operating Program) 

tools for creating and editing fuzzy inference systems 

or integrating our fuzzy systems into simulations 

with BORIS (Block ORIented Simulation). The 

fuzzy shell FLOP allows the design and the analysis 

of rule based systems on the basis of fuzzy logic. The 

program offers the following options: definition of 

linguistic variables and corresponding terms, creation 

of rule bases, realization of inference processes, 

evaluation of transfer characteristic curves and maps, 

simulation based on recorded data and creation of 

fuzzy controller files for the block oriented 

simulation system BORIS [18].  
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The evaluation system of supply chain resilience is a 

hierarchical structure. In the first sequence the 

Security (SE), Survivability (SU) and Recovery (RE), 

were evaluated, and the information about them can 

be represented by the membership function of fuzzy 

system. Trapezium membership functions are 

associated with the numerical value RE, SU, SE. 

Each of these parameters was divided in to three 

categories- Low, Moderate and High from range 0 

to 1. Level of resilience (R) is an output of this 

system and it is depends on the value of inputs and 

on the “knowledge” which is implemented in the 

rules base in a fuzzy system. The structure of the 

resilience category evaluation system is show in 

Figure 1. Each of the input parameters of the system, 

namely, SE, SU and RE is determined by another 

independent fuzzy system.  

 

 
 

Figure 1. Structure of the resilience evaluation 

system (own work) 

 

An example of a system for evaluation survivability 

level shown in Figure 2. The trapezium membership 

functions type for inputs and output variables were 

also applied. The parameter ROB is divided in three 

categories, and parameters DET and ADA are 

divided only in to two categories. In the case of using 

trapezoidal membership function models for 

linguistic variables, one may assume that that the 

measure of uncertainty in quantitative estimates is 

the angle of inclination of the sides of the trapezoids 

(a right angle corresponds to a lack of uncertainty in 

the estimate, and the smaller the angle, the larger the 

uncertainty). So slope of each input variables could 

be interpreted as an uncertainty of input parameter 

estimation.  

 

 
 

Figure 2. Structure of the system for evaluation 

survivability level (own work) 

 

Structure of the resilience level simulation model is 

shown in Figure 3. 

 

 
 

Figure 3. Structure of the resilience level simulation 

model (own work) 

 

Simulations were carried out in the BORIS software 

to observe the impact of changes in inputs 

parameters on the output. Each input parameter can 

be set at a level ranging from 0 to 1. The 

implemented simulation system allows for 

continuous observation of changes in output 

depending on the value of input signals. Simulation 

of the system can run continuously. In addition, 

during the simulation, it is possible to observe the 

degree to which input variables belong to given 

membership functions and it is also possible to 

identify the rules involved in generating system 
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output as well as changes in resilience level that are 

functions of changes in inputs values. 

 

4. Conclusion 
 

The framework for evaluation of supply chain 

resilience proposed in this paper is a universal, 

“shell” type model, that can be applied to verifying 

and validating the vulnerability of logistics systems, 

especially at the design stage. Adapting this tool to 

the needs of a particular type of system or a specific 

practical case requires the estimation of numerical 

values (or ranges) corresponding to each parameter 

class. 

In the case of using triangular or trapezoidal 

membership function models for linguistic variables, 

the measure of uncertainty in quantitative estimates 

is the angle of inclination of the sides of the triangles 

or trapezoids (the smaller the angle, the larger the 

uncertainty). 
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