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Abstract 
 

A complex technical system built of independent repairable components with constant failure and repair rates is 
examined. The system can operate in either basic or emergency mode, and its behavior is modeled by a three-
state Markov process. It is demonstrated how to obtain closed formulas for the state probabilities of this process 
and the so-called importances of individual components to the inter-state transitions. Such an importance is 
defined as the probability that a component’s failure/repair causes a transition between two given states of the 
modeling process. The obtained formulas allow to compute a number of reliability parameters characterizing 
the dynamics of the system’s operation. The obtained results are illustrated by their application to an exemplary 
reliability block diagram that can be a model of a power supply network, a gas or oil pipeline system, etc. 
 
1. Introduction 

In this paper, a complex system built of independent 
repairable components with constant failure and 
repair rates is considered. The system can operate in 
either basic or emergency mode, and its functioning 
is modeled by a three-state Markov process on the 
state space {0,1,2}. The system is in state 1 if it 
operates in basic mode, in state 2 if it operates in 
emergency mode due to basic mode’s failure, or in 
state 0 if both modes are failed. The paper’s aim is to 
present analytical formulas for the system’s key 
reliability parameters, derived by the author. 
As an example, let us take a small power supply 
network whose reliability block diagram (RBD) is 
displayed in Figure 1. The boxes denoted e1,…,e8 
represent the network’s components listed below.  
 
e1 – distribution company’s network 
e2 – renewable source connected to e5 
e3 – low voltage bus bar  
e4 – low voltage cut-off switch + low voltage cable 

line + low voltage cut-off switch 
e5 – load point (LP) 
e6 – transfer switch + low voltage cut-off switch 
e7 – low voltage cut-off switch + low voltage cable 

line + low voltage cut-off  
e8 – load point 

Remark: + denotes the serial connection between 
elements of e4, e6, or e7. The failure and repair rates 
of e4, e6, and e7 can be found from (5) and (6), where 
S={0,1}, 0 <d 1. 
 

 
 

Figure 1. RBD of a small power supply network. 
Arrows show the end of emergency supply path to e8 
 
Let us shortly analyze the network’s functioning with 
respect to the LP e8 which operates in normal mode 
when all elements along the path (e1, e3, e7, e8) or 
(e2, e5, e4, e3, e7, e8) are operable. When the normal 
mode fails, which can be caused by e.g. a failure of 
e3 or e7, then e8 is switched to emergency mode by 
the transfer switch in e6, provided that all elements 
along the path (e2, e5, e6, e8) or (e1, e3, e4, e5, e6, e8) 
are operable. When the normal mode is restored then 
e8 is switched back into normal mode. Obviously, it 
can happen that both the normal and emergency 
modes are failed, and then a power outage occurs at 
e8. The functioning of e8 can thus be modeled by a 
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three-state stochastic process on the earlier defined 
state space.  
We now give the outline of the paper. It is composed 
of four main sections numbered 2 through 5 and the 
6-th concluding section. In section 2 the Markov 
property of the random process modeling the 
considered system’s behavior is proved. The 
formulas for computing the system’s key reliability 
parameters, i.e. the state probabilities and the inter-
state transition intensities of the modeling process, 
are derived in sections 4 and 5 for which the 
theoretical background is presented in sections 2 and 
3. The considerations of section 5 are based on the 
above given example, but can easily be extended to 
the general case. In section 6 it is shown how other 
parameters, characterizing the dynamics of switching 
between basic and emergency modes, can be 
obtained. 
Readers interested in the reliability of power 
distribution systems (such a system serves as an 
example here) are referred to [2], while those 
needing an insight into the general theory of 
reliability – to [1] and [6]. 
 
2. General formulas for the transition 
intensities of a multistate system with two-
state renewable components 
 

Let us consider a multistate complex system 
composed of two-state components such that their 
failure-repair processes are two-state independent 
homogenous Markov chains. The system will be 
described by the following characteristics: 
 
{ei, 1 ≤ i ≤ n} – set of the system’s components 

J = {1,…,n} – set of the components’ indices 

λi, µi – failure and repair rates of ei 

xi – binary variable representing the state of ei , i.e. 
xi=1/xi=0 if ei is operable/failed 

x – vector of the components’ states, x = [x1,…,xn] 

{0,1} n – set of binary vectors of length n 

[x, 1i], [x, 0i] – vector x whose i-th coordinate is set 
to 1 or 0 

d(x, y) – number of coordinates in which vectors x 
and y differ (the Hamming distance) 

X i(t) – state of ei at time t (a random variable) 

pi(t), qi(t) – state probabilities of Xi(t), i.e.             
pi(t) = Pr[Xi(t)=1], qi(t) = Pr[Xi(t)=0] 

X(t) – vector of the components’ states at time t, i.e. 
X(t) = [X1(t),…,Xn(t)] 

Φ(x) – the system’s structure function expressing the 
system’s state in relation to the components’ states 

S – the discrete set of the system’s states with the 
partial order transferred by Φ from the partial 
order in {0,1}n, i.e. 

    ��, � ∈ �0,1	
� ∧ �� < �� ⇒ Φ��� ≤ Φ��� 

where < and ≤ denote the strong and weak 
precedence relations in {0,1}n and S. We adopt the 
usual partial order in {0,1}n, i.e. x < y if d(x,y)>0 
and yi – xi = 1 for each xi ≠ yi. 

<d – direct precedence relation in {0,1}n and S 

Z(t) – the system’s state at time t, i.e. Z(t) = Φ(X(t)) 

Z – stochastic process (Zt, t≥0), where Zt = Z(t) 

Λa→b(t) – intensity with which Z changes its state 
from a to b at time t (a transition intensity), 
defined as follows: 

Λ�→���� =  

  = lim∆�→�
�
∆�

Pr !�� + ∆�� = #	|	!��� = &'    (1) 

Πa→b
crit(i) – set of binary vectors x such that xi=1, 

Φ(x)=a, and Φ(x, 0i)=b  

Θa→b
crit(i) – set of binary vectors x such that xi=0, 

Φ(x)=a, and Φ(x, 1i)=b 

Ia↔b(i) – importance of ei to a transition between a 
and b, defined as follows: 

 
   (�↔��*� = Pr+, ∈ Π�⟶�

/01� �*�	|	,1 = 12  

                = Pr+, ∈ Θ�⟶�
/01� �*�	|	,1 = 02          (2) 

 
i.e. Ia↔b(i) is the probability that the failure/repair of 
ei causes a transition from a to b, given that ei is 
operable/failed. 

∨ – the “Boolean” sum of real numbers from the 
[0, 1] interval, defined as p1 ∨ p2 = p1 + (1 – p1)p2 

 
Remark 1: It was shown in [3] that 
 

   41��� = 56

76856
+ 76

76856
exp −�=1 + >1��'    (3) 

 

   ?1��� = 76

76856
− 76

76856
exp	 −�=1 + >1��'    (4) 

 
Remark 2: If x∈Πa→b

crit(i) then we say that x is 
critical to the transition from state a to b caused by 
ei’s failure. If, in turn, x∈Θa→b

crit(i) then we say that 
x is critical to the transition from state a to b caused 
by ei’s renewal. These notions of criticality are 
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generalizations of a path-vectors’ or a cut-vectors’ 
criticality for a two-state system (see [1]). Clearly, if 
x∈Πa→b

crit(i), then [x, 0i]∈Θb→a
crit(i). 

 
Remark 3: Ia↔b(i) is a generalization of the Birnbaum 
importance for a two-state system. Various types of 
components’ importances in multi-component 
systems are discussed in [5]. 
 
Now the main result of this section, which is a 
theorem giving the expressions for the transition 
intensities of the process Z, will be formulated. 
 
Theorem 1. Let a,b∈S, a≠b. Then Λa→b > 0 only if 
a <d b or a >d b, which means that direct transitions 
between a and b are only possible if one directly 
precedes the other. If a <d b then we have:	 
 

   Λ�→���� = �
@A B���C�'

∑ >1?1���(�↔��*, ��1∈E     (5) 

 

   Λ�→���� = �
@A B���C�'

∑ =141���(�⟷��*, ��1∈E     (6) 

 
Proof. The proof will appear in the extended version 
of this paper, being prepared for publication. 
 
Remark: the formulas (5) and (6) are generalizations 
of the analogous ones which can be found in [3] and 
[4]. 
 
An important conclusion can be drawn from 
Theorem 1. If Φ is a structure function, and the 
partial order in S is transferred by Φ from {0,1}n, 
then Z is a Markov process with the transition 
intensities given by (5) and (6). Indeed, it can be 
easily shown that Pr[Z(t)=a], Pr[Z(t)=b], and Ia↔b(i), 
i∈J are functions of pi(t), hence these intensities are 
functions of t, and do not depend on the history of Z 
before time t. Also, they converge to constant values 
as t→∞, because pi(t) converges to µi/(λi+µi) as 
t→∞. Z is thus asymptotically homogenous. 
 
3. A Markov model of a two-mode system 
 

A key assumption about the considered system is that 
its components are independent, i.e. the time-to-
failure (TTF) and time-to-repair (TTR) of any 
component do not depend on any other component’s 
TTF or TTR. Clearly, this assumption may seem 
doubtful, because a component has to wait for repair 
if all maintenance teams are busy repairing other 
failed components, in which case the dependence of 
the component’s TTR on the TTRs of other 
components is evident. However, if the components’ 
failure rates are very small compared to their repair 
rates, i.e. λi << µi, i∈J, which is often the case in 

practical situations, then the probability that a 
component fails when another component undergoes 
repair is close to zero. Moreover, if there are at least 
two maintenance teams, then repairs of two (or 
more) components can be performed simultaneously, 
if (notwithstanding the small failure rates) a 
component fails while another one is under repair. In 
consequence, the system’s functioning can be 
approximately described by n independent two–state 
Markov chains, each being the failure-repair process 
of the respective component. Such approach directly 
leads to the construction of a Markov chain with 2n 
states. Nevertheless, it occurs that in order to model 
the system’s functioning as perceived by a user the 
number of states can be greatly reduced. Such a 
model will be constructed in this section. In the next 
section formulas for the transition intensities of the 
respective Markov chain will be derived. 
To begin with, a detailed model of the considered 
system is presented in Figure 2 in the form of inter-
state transitions diagram. The meanings of individual 
states are given below the figure. This model takes 
into consideration each situation that can arise as a 
consequence of the fact that the system has two 
modes of operation. 
 

 
 

Figure 2. The detailed model of the system’s 
operation 
 
3 – both modes are operable, BM is active (EM has 

been switched to BM) 
3’ – both modes are operable, EM is active 
1 – BM is active, EM is under repair  
1’ – BM is operable and inactive, EM is under repair 
2 – BM is under repair, EM is active 
2’ – BM is under repair, EM is operable and inactive 
0 – both modes are failed, BM is under repair, EM is 

awaiting repair 
0’ – both modes are failed, EM is under repair, BM 

is awaiting repair 
 
Clearly, the stochastic process illustrated in Figure 1 
has the Markov property if the sojourn times in each 
state is exponentially distributed. However, 
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Theorem 1 cannot be applied here, because the 
process’s state space is not an image of {0,1}n for 
any function defined on {0,1}n. In particular, the 
transition from 1’ to 1, 2’ to 2, or 3’ to 3 is not an 
effect of a component’s state change, but that of 
switching between basic and emergency modes. 
When there are two or more maintenance teams then 
repair of either mode can start immediately after its 
failure, and the states 0’ and 0 can be merged into 
one state – 0. The resulting diagram is presented in 
Figure 3, and the remark regarding the application of 
Theorem 1 still holds. 
 

 
 

Figure 3. The model assuming no waiting times 
 
Let us note that the transition chain 3→2’→2 is 
perceived by a system’s user as the direct transition 
3→2, i.e. from basic to emergency mode. Similarly, 
the transition chain 2→3’→3 is perceived as the 
direct transition 2→3, i.e. from emergency to basic 
mode. Further, the transition chains 0→1’→1 and 
0→2’→2 are perceived as the direct transitions 0→1 
and 0→2 respectively. In consequence, from a user’s 
viewpoint, each of the states 1’, 2’, and 3’ can be 
merged with the state 1, 2, or 3, respectively. The 
resulting diagram is shown in Figure 4.  
 

 
 

Figure4. The four-state model 
 
As each transition involves a failure or repair of at 
least one component, the state space of the process 
illustrated in Figure 4 is given by S = Φ({0,1} n) = 
= {0,1,2,3}, where Φ is the respective structure 
function. The partial order in S, transferred from that 

in {0,1} n, is given by the following relations: 0 <d 1, 
0 <d 2, 1 <d 3, 2 <d 3. We can thus find the inter-state 
transition intensities by applying Theorem 1. 
Let us note that a user may not distinguish between 
the states 1 and 3, because in both cases the system 
operates in basic mode, and a transition between 1 
and 3 does not cause a break in the system’s 
operation, noticeable to a user. Thus our model can 
be further simplified, by merging the state 3 with 1, 
to the model presented in Figure 5. 
 

 
 

Figure 5. The three-state model 
 
The state space of the process illustrated in Figure 5 
is given by S = Φ({0,1} n) = {0,1,2}, where Φ is the 
respective structure function. The partial order in S, 
transferred from that in {0,1}n, is given by the 
following relations: 0 <d 1, 0 <d 2, 2 <d 1. Thus, as in 
the previous case, we can apply Theorem 1 in order 
to find the inter-state transition intensities, which will 
be done in the next section. 
We conclude this chapter with a remark relevant to 
possible applications of the presented model. It can 
be assumed that the switching between basic and 
emergency modes is done instantly, i.e. times of 
transitions 1’→1, 2’→2, and 3’→3 are much shorter 
than the remaining transition times. Thus, in the 
three-state model, the transitions 1→2 and 2→1 are 
associated with short breaks in the system operation. 
In turn, the sojourn in state 0 is perceived as a long 
break, because it involves restoring and activating 
basic or emergency mode. 
 
4. Formulas for the transition intensities of 
the three-state system 
 

In this section, let Z be the three-state process 
illustrated in Figure 5. Let also Ps(t) = Pr[Z(t)=s], 
s∈{0,1,2}. We will now derive formulas for the 
transition intensities of Z. This task will be made 
easier by using the intensities of transitions of two-
state processes obtained from Z by aggregating the 
states 0+2 or 1+2. For simpler notation, we will omit 
the variable t where no confusion arises. These 
intensities are defined as follows: 
 
   Λ�→�8G��� =  
 

1 
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   = limH→�
�
I
Pr Z�t + u� ∈ �0,2	|Z�t� = 1'    (7) 

 
   Λ�8G→���� = 
 

   = limH→�
�
I
Pr Z�t + u� = 1|Z�t� ∈ �0,2	'    (8) 

 
   Λ�8G→���� = 
 

   = limH→�
�
I
Pr Z�t + u� = 0|Z�t� ∈ �0,2	'    (9) 

 
   Λ�→�8G��� = 
 

   = limH→�
�
I
Pr Z�t + u� ∈ �1,2	|Z�t� = 0'  (10) 

 
where + is the aggregation operator. The definition 
of a component’s importance to an inter-state 
transition yields: 
 
   (�↔�8G�*� = NO�|P6C� − NO�|P6C�   (11) 
 
   (�8G↔��*� = NO�8G|P6C� − NO�8G|P6C�   (12) 
 
where i∈J, and P1+2(t) = Pr[Z(t)∈{1,2}] = P1(t)+P2(t). 
From (5) and (6) we obtain: 
 

   Λ�→�8G = �

QR
∑ =141(�↔�8G�*�1∈S    (13) 

 

   Λ�8G→� = �

�TQR
∑ >1?1(�↔�8G�*�1∈S    (14) 

 

   Λ�8G→� = �

QRUV
∑ =141(�8G↔��*�1∈S    (15) 

 

   Λ�→�8G = �

�TQRUV
∑ >1?1(�8G↔��*�1∈S   (16) 

 
The transition intensities of Z will be expressed using 
those defined by (13)-(16), and the importances 
I1→2(i), i∈J. However, the latter are not given by 
formulas as simple as (11)-(12). This is due to the 
fact that Z is not a two-state process. A method to 
compute I1→2(i), i∈J will be presented in the next 
section. 
As 2 <d 1, from (5) and (6) we get: 
 

   WX→Y = Y
ZX

∑ [\]\^Y⟷X\∈^    (17) 

 

   _1→2 = �
QR

∑ =141(�⟷21∈E                                    (18) 

 
From (7), (8), and the law of total probability it 
follows that: 
 

   _�→�8G = _�→� + _�→G    (19) 
 

   Λ�8G→� = `a→RQa8`V→RQV

Qa8QV
    (20) 

 
where P0(t) = Pr[Z(t)=0] = 1 – P1(t) – P2(t). From 
(19) and (20) we have: 
 
   Λ1→0 = Λ�→�8G − Λ1→2    (21) 
 

   Λ�→� = `aUV→R�Qa8QV�T`V→RQV

Qa
    (22) 

 
It now remains to compute Λ2→0 and Λ0→2. By the 
same argument as just used we obtain: 
 
   Λ�→�8G = Λ�→� + Λ�→G    (23) 
 

   Λ�8G→� = `R→aQR8`V→aQV

QR8QV
    (24) 

 
The equalities (23) and (24) yield: 
 
   Λ�→G = Λ�→�8G − Λ�→�    (25) 
 

   Λ2→0 = `1UV→0�Q18QV�T`1→0Q1
QV

    (26) 

 
where Λ0→1 and Λ1→0 are given by (22) and (21) 
respectively. 
As can be seen, all transition intensities of Z are 
expressed by P1(t), P2(t), and I1↔0(i,t), i∈J, which, in 
turn, are functions of pi(t), i∈J. Z is thus a Markov 
chain with time-dependent transition intensities. As 
follows from (3), each pi(t): i∈J converges to 
µi/(λi+µi) as t→∞, hence each Λa→b(t): a,b∈{0,1,2} 
converges to a constant value. In consequence, Z is 
asymptotically homogenous. 
A method to find P1(t), P2(t), and I1↔2(i,t), i∈J, which 
have to be known in order to use the formulas 
(17)-(18), (21)-(22), and (25)-(26), is presented in the 
next section 5. 
 
3. Computing P1, P2, and I1↔↔↔↔2 for the 
exemplary system 
 

As can be expected, the method to compute the state 
probabilities P1 and P2, and the importances 
I1↔2(i), i∈J is based on analyzing the system’s RBD. 
This method will be illustrated using the RBD of the 
exemplary system, shown in Figure 1.  
We will first find the formulas for P1 and P2. Let us 
note that the events {x6=0}, {x 6=1, x5=0}, 
{x 6=1, x5=1, x4=0}, {x 6=1, x5=1, x4=1, x3=0},…, 
{x 6=1,…, x3=1, x7=0}, and {x6=1,…, x3=1, x7=1} are 
disjoint and exhaustive. From the law of total 
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probability and the rules for computing the 
reliabilities of series-parallel systems, we obtain: 
   O�8G =  	?b�4�4c4d ∨ 4G�4f4g  

                 +	4b?c�4G4f4g� 

                 +	4b4c?d�4� ∨ 4G4f4g�  

                 +	4b4c4d?f�4�� 

                 +	4b4c4d4f?g�4� ∨ 4G� 

                 +	4b4c4d4f4g�4� ∨ 4G�	' ⋅ 4i   (27) 
  
Reversing the order of components in the first 
“Boolean” sum, and transforming all the “Boolean” 
sums using the definition of the operator ∨, we 
obtain: 
 
   O�8G =  	?b�4G + ?G4�4c4d�4f4g 

                  +	47?3424546 

                  +	4b4c?d�4� + ?�4G4f4g� 

                  +	474344?541 

                  +	4b4c4d4f�4� + ?�4G�	' ⋅ 4i  (28) 
 
From (28) and the RBD in Figure 1 it follows that: 
 
   O� =  	4b4c?d�4�� 

             +	4b4c4d?f4� 

             +	4b4c4d4f�4� + ?�4G�	' ⋅ 4i   (29) 
 
   OG =  	?b�4G + ?G4�4c4d�4f4g 
             +	4b?c4G4f4g 

             +	4b4c?d?�4G4f4g	' ⋅ 4i   (30) 
 
We now pass to the computation of I1↔2(i). As 
2 <d 1, transitions from 2 to 1 are triggered by 
components’ repairs. From the RBD in Figure 1 it 
can be seen that (1,3,7,8) and (2,5,4,3,7,8) are the 
basic minimal path-sets, and (2,5,6,8) and 
(1,3,4,5,6,8) are the emergency minimal path-sets. 
Let us note that if i∈{5,6,8} then ei belongs to the 
both emergency path-sets, which means that Φ(x) ≠ 2 
if x i=0. In consequence Θ2→1

crit(i) = ∅, and 
 
   (�⟷G�*� = 0; 	* = 5, 6, 8    (31) 
 
For i∈{1,2,3,4,7} the formula for I1↔2(i) is obtained 
by first selecting those components in the expression 
for P2, which contain the variable qi. Each vector x 
such that xi=0 (ei is failed) and Φ(x)=2 (the system’s 
state is 2) corresponds to one such component. Then 
for each selected component it is checked if the 
repair of ei “opens” at least one basic path, all of 

which are “closed” before ei‘s repair. If so, the 
component (after the removal of the variable qi, and a 
possible further modification) is added to the 
expression for I1↔2(i). Clearly, in order to obtain this 
expression, the variable qi has to be deleted from 
each selected component of P2, as I1↔2(i) is a 
conditional probability provided that xi=0. 
For i=1 the selected component is p7p3q4q1p2p5p6p8. 
As it contains the variables p3, p7, and p8, the repair 
of e1 opens the basic path (1,3,7,8), hence 
 
   (�⟷G�1� = 4b4c?d4G4f4g4i    (32) 
 
For i=2 the selected component is q7q2p1p3p4p5p6p8. 
However, the repair of e2 does not open any basic 
path due to the presence of q7 in the analyzed 
component, hence 
 
   (�→G�2� = 0      (33) 
 
For i=3 the selected component is p7q3p2p5p6p8. The 
repair of e3 opens (1,3,7,8) provided that e1 is 
operable, or (2,5,4,3,7,8) provided that e4 is operable. 
We thus have 
 
   (�⟷G�3� = 4b4G4f4g4i�4� ∨ 4d� 

                  = 4b4G4f4g4i�4� + ?�4d�   (34) 
 
For i=4 the selected component is p7p3q4q1p2p5p6p8. 
The repair of e4 opens (2,5,4,3,7,8) (note that it 
cannot open (1,3,7,8) due to the presence of q1), 
hence  
 
   (�⟷G�4� = 4b4c?�4G4f4g4i	    (35) 
 
For i=7 the selected components are is q7p2p5p6p8 and 
q7q2p1p3p4p5p6p8. In case of the first component, the 
repair of e7 opens (1,3,7,8) if e1 and e3 are operable, 
or (2,5,4,3,7,8) if e3 and e4 are operable. In case of 
the second component the repair of e7 opens (1,3,7,8) 
only (due to the presence of q2). In consequence 
 
   (�⟷G�7� = 4G4f4g4i�4� + ?�4d�4c 

                     +	?2414344454648	   (36) 
 
6. Conclusion 
 

A method to compute the state probabilities and 
inter-state transition intensities for a complex system 
operating according to a three-state Markov model 
has been presented. This method, appropriately 
modified,  can be applied to a broad spectrum of 
Markov-modeled multi-state systems. In particular, 
the systems that fulfill the assumptions of Theorem 1 
are eligible. The computation of state probabilities 
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and transition importances was presented in section 5 
for the exemplary system, but it can easily be 
generalized to any system whose each path-set 
(obtained from its RBD) corresponds to one of the 
system’s modes of operations (or states). 
The key reliability parameters, i.e. the inter-state 
transition intensities can be used to obtain other 
characteristics of the system’s behavior. Let us adopt 
the following definitions: 
Lj – the mean sojourn time in the state j, j∈{0,1,2} 
Nj→k(u) – the mean number of times the system 

changes its state from j to k in a time interval of 
length u. 

Nlong(u) – the average number of long brakes in the 
system’s operation, resulting from failures of the 
both modes 

Nshort(u) – the average number of short breaks in the 
system’s operation, caused by switching between 
the both modes 

It can be simply shown that 
 

   qr = s∑ Λr→tt∈��,�,G	,tur v
T�

       (37) 
 
   wr→t�x� = xyrΛr→t     (38) 
 
   Nlong(u) = N1→0(u) + N2→0(u)    (39) 
 
   Nshort(u) = N1→2(u) + N2→1(u)    (40) 
 
The above defined characteristics are particularly 
important for the reliability analysis of power 
distribution networks. 
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