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Abstract 
 

Cloud computing is a growing field since data storage is becoming ever more decentralized. Providers of Cloud 
solutions want to insure the safety and availability of their customers’ data. In order to increase these 
performance indices, several storage policies have been implemented: replication, erasure codes, etc. A few of 
them rely on randomized procedures. 
In this paper, we focus on the influence of a specific storage policy on the availability of a given file. Taking 
only disk failures into account, we provide a general formula for the average file unavailability ��, which is a 
generalization of the well-known k-out-of-n problem, to which it reduces when disks are identical. We then 
calculate �� for several configurations when disks have different reliabilities, and show that the disk 
arrangement has a major impact on the result. We also provide an approximation which could be helpful for 
more complex arrangements. 
 
1. Introduction 
 

Cloud services have emerged as the new data storage 
solution. Business players are competing to offer the 
best solution in terms of usability, safety and 
availability [2]. The key point is to design robust data 
centers that maximize these performance criteria.  
From a customer point of view, data availability is 
crucial. That is why many storage solutions have 
been developed in order to increase data safety. They 
use pure replication (several copies of the same data 
are stored in different locations) [9], [12]-[13], [19], 
[24], compression [1], or erasure code techniques 
(based on error-correcting codes that lessen the 
storage overhead) [7]-[8], [23], etc. 
How can we compare the performance of different 
approaches/architectures? Several performance 
indices have been proposed: 

• the Mean Time To Data Loss (MTTDL) is the 
most commonly used performance index [7], 
[9], [15], [23]-[24] in the context of data loss 
prevention strategies. Different models of 

storage and repair policies have been studied, 
and “rebuild’’ procedures described [22]. The 
MTTDL varies with the way redundant data are 
stored (“Clustered vs Declustered’’) [24]. The 
MTTDL is often computed using Markov 
models and criticized accordingly [5]-[6], [16]. 

• the Normalized Magnitude of Data Loss 
(NOMDL) [6] is expressed by the number of 
bytes lost per mission lifetime. 

• the Expected Annual Fraction of Data Loss 
(EAFDL) [9]. 

• other metrics have been suggested: the Bit Half-
life [16], the Double Disk Failures [5], the Data 
Loss events per Petabyte Year [7] and others, 
showing that the definition of a  
metric combining ease of computation, 
meaningfulness, and practicality is still hotly 
debated. 

In this work, we have adopted the point of view of a 
customer, and chosen to consider the average 
unavailability �� of a given file, in the case of a 
specific storage policy [12]-[13], [21], [23]-[24]. 
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While this unavailability is of course dependent on 
the architecture of the data center in terms of 
hardware (disks, buses, switches, racks, nodes, etc.) 
and software (protocols), we shall limit ourselves to 
the influence of the hard drives’ unavailabilities only. 
Our configuration is actually a generalization of the 
well-known k-out-of-n problem [3], [11], [16]. We 
show that the disk placement policy has a direct 
influence on the file unavailability when the hard 
drives are different. We also provide a satisfactory 
approximation to �� in order to make computations of 
this performance index much easier. 
Our paper is organized as follows. In section 2, we 
describe the storage policy. In section 3, we explain 
the method leading to the general expression of the 
file unavailability and explain how it reduces to the 
classical k-out-of-n result when disks are identical. 
Because of combinatorial aspects, the exact 
expression of the file unavailability cannot always be 
computed in a reasonable time. We explicitly 
calculate �� in section 4 for particular cases that could 
be deployed in real systems. From the exact 
expressions, we deduce efficient second-order 
approximations that provide quick and satisfactory 
estimates that might be helpful in the general case. 
Finally, by comparing the results of our different 
case studies, we prove the influence of the disk 
arrangement on the file unavailability. We conclude 
by a brief discussion of future work. 
 
2. Storage Policy 
 

2.1. Data processing 
 

Each file is first split into K data blocks. Redundancy 
procedures implemented in erasure coded systems 
transform those K blocks into n new blocks (also 
called chunks) which are then stored in different 
locations, in order to minimize common-cause 
failures. Let us set  
 			� = � − � + 1.																																																											(1) 
 
The gist of such procedures is that the initial file 
cannot be rebuilt (i.e., recovered) if at least d chunks 
have been lost because of hard drive failures (d may 
be linked to some Hamming distance [7]). In other 
words, if at least d of the n chunks are lost, the file is 
irrecoverable. In practice, we shall have 7 ≤ � ≤ 20 
and 3 ≤ � ≤ 6. 
 
2.2. Data storage 
 

We now have to store n chunks in the set of m hard 
drives of the system. The storage policy is 
implemented using randomized procedures, the 
principle of which is displayed in Figure 1. Firstly, 

we randomly select one disk (among the m disks) 
where we will store the first chunk. Secondly, the n – 
1 remaining chunks are stored (again, at random) in 
the S disks following the first one. The disks are 
indexed by a logical address; they are not necessarily 
located in the same rack or node. S is called the 
spread factor. It must obey the inequalities � − 1	 ≤�	 ≤ � − 1. The number of disks in a data center can 
reach several thousands. In the following, the set of n 
disks containing the chunks will be called a 
configuration. If the spread factor S is large enough, 
there might be different ways of selecting the same 
configuration C, as shown in Figure 2. For 
operational reasons, we do not wish one 
configuration to be “drawn” more often than others, 
since it would imply a heavier load on the relevant 
disks, and a possible decrease of their lifetimes. We 
can ensure that the load is evenly distributed over all 
possible configurations by choosing  
 			�	 < �2 ,																																																																									(2) 
 
because any possible configuration can then be 
selected once only. 
 

 
 

Figure 1. The placement policy using the spread 
factor S = 6 for m = 13 and n = 4 
 

 
 

Figure 2. An example of two different ways to select 
a configuration with m = 13, S = 10 and n = 5 
 
The probability of selecting a configuration is: 
 			 1�	����� 																																																																									(3) 
 
where 
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			����� =		 �!(� − � + 1)! (� − 1)!.																				(4) 
 
In this work, we wish to study the possible influence 
of S on the file unavailability, so that it will be 
treated as a (almost) free parameter, as will be 
apparent in the next sections. 
 
3. File unavailability 
 

3.1. General case 
 

For a system of disks with unavailabilities {qi} 1≤i≤m, 
the file unavailability can be calculated as follows. 
For any configuration C of n disks, the probability 
that at least d chunks are lost is known as “d-out-of-
n:F” [3], [11], [16], [21]. Let us name this 
quantity	�(�	out − of − �: $	; �). Efficient methods 
and algorithms have been proposed to compute it, 
using various formulations [4], [11]. Then, the 
average file unavailability is nothing but the sum 
over all feasible configurations of	�(�	out − of −�:$	;� multiplied by the probability that C has been 
selected. Under the assumption	� > 2	�, all 
configurations have the same probability of being 
drawn, so that the average file unavailability reads 
 			�� = 	 1�	����� 	'�(�	out − of − �: $; �)( . (5) 
 
It is worthwhile stressing that �� is actually a two-
fold average. The first average is related to the 
randomized procedure for the storage of chunks. The 
second one is implicit in �(�	out − of − �: $; �) 
since it must take the random character of failures 
and repairs of each disk into account, so that 
individual unavailabilities may be defined. Equation 
(5) shows that �� can be computed exactly in the 
general case, but the ����� factor makes computation 
times unreasonably long when �	 ≫ � − 1. We shall 
see in the following that eq. (5) may however take a 
simple form in particular cases.  
 
3.2. Identical disks 
 

When disks are identical, with therefore the same 
reliabilities, �(�	out − of − �: $	; �) reduces to the 
classical result for k-out-of-n systems. Indeed, if + is 
the disk unavailability, the probability that at least d 
chunks are lost for any configuration C is 
 

			�(+) = 	' ��,�
,-. +,(1 − 	+)��,.																						(6) 

By replacing the previous expression in eq. (5), the 
average file unavailability for identical disks reads 
 			�� = 	�(+).																																																											(7) 
 
3.3. Discussion 
 

The lifetime duration of disks in data centers is 
shorter than the one of disks in personal computers 
since disks in Cloud systems are much more 
solicited. The issue of the disk’s MTTF is still much 
debated [5], [10], [14]-[16], [18], and the figures 
mentioned in the literature are typically of the order 
of a few 105 hours. A  good order of magnitude for a 
disk unavailability would thus be +	 ≈ 10�0 or even 
less. For such values, even the first term of eq. (7), 
namely ��.+.(1 − 	+)��., that can also be 
approximated by ��.+., provides a good estimate of 
the file unavailability. Indeed, with �	 = 	12 and �	 = 	4, the relative error between eq. (7) and its 
approximation is less than 0.07 %. 
Equation (7) and its approximation give the file 
unavailability when disks are identical. However, it 
is known that even for batches of the same model, 
different lifetimes are to be expected [15]. In the 
following section, we shall study systems in which 
two or more families of disks are used, in different 
deployments. 
 
4. Case studies 
 

In this section we shall consider two different ways 
to arrange disks, and see their possible influence on ��. We shall also inquire whether a good estimate of ��	could be obtained from �(+1), where +1 is the 
average disk unavailability. 
 
4.1. Block arrangement 
 

Let us first consider a system constituted by two 
types of disks, of unavailabilities q1 and q2, 
respectively.  The first deployment considered here is 
represented in Figure 4, in which m1 disks of type 1 
are followed by m2 disks of type 2. This placement 
will be denoted as “two-block” arrangement. 
 

 
 

Figure 4. “Two-block” arrangement with m = 12 and 
m1 = m2 = 6 
 
The numbers m1 and m2 can be arbitrary, but we will 
assume that both of them are greater than S. For the 
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sake of simplicity, let us start the calculation of ��	for 
the simplest case, that is m1 = m2 = m/2, and set 
 			+ = 	12 (+� + +2),																																																(8) 
 			4 = 	12 (+� − +2).																																																(9) 
 �� is the sum of four contributions 
 			�� = 	6� +	62 +	6�→2 +	62→�.																												(10)  
 
The term 6� (resp. 62) originates with the selection 
of the first disk in the first m1 – S disks (resp. �2	−	�) of the system. Indeed, if we do so, the S 
following neighbors will also be of type 1. Then, any 
configuration from these S+1 disks will be 
constituted with type-1 disks only (see the top of 
Figure 5) and we can apply eq. (7). 
 

 
 

Figure 5. Contribution of configurations with the 
same type of disks with �	 = 	12 and	�	 = 	4 
 
For all these configurations, the probability of file 
unavailability will be, thanks to eq. (2), 
 			6� = �� − �� 	�(+�).																																							(11) 
 
We can make a Taylor expansion in 4 of �(+�), with 	+� = + + 	4. Since �(+) is of degree n, the 
derivatives �(,)(+) with 8 > � vanish. 6� reads 
therefore 
 

			6� = �� − �� 	' 18!
�

,-9 	�(,)(+)	4,.																		(12) 
 
In a similar way (see the bottom of Figure 5), if the 
first selected disk belongs to the first	�2	– 	�, the 
contribution 62 reads, because 	+2 = + − 	4, 

			62 = �2 − �� 	'(−1),8!
�

,-9 �(,)(+)	4,.										(13) 
 
The remaining terms are obtained when the S+1 
disks could contain disks of both types. The 
contribution 6�→2 (resp. 62→�) is obtained when the 
first disk selected belongs to the last S disks of type 1 
(resp. type 2) (see Figure 6).  
 

 
 

Figure 6.  The contributions when the ; + < disks 
are of both types 
 6�→2 and 62→� are expected to be expressed, like 6� 
and 62 in eqs. (12) and (13), as linear combinations 
of derivatives of 	�(+) and powers of 4. Indeed, for 
any of these configurations, the probability of losing 
at least d disks is a polynomial expression in q1 and 
q2, as is the sum of all contributions. 6�→2 will be 
therefore a polynomial in q and 4 of degree at most 
n. The only unknown is the coefficient before each 
term. These coefficients are expected to depend on 
(at most) n, S, d and m. We have computed formally 6�→2 and these coefficients for various values of n, d 
and S, using Mathematica. We have found that 
 

			6�→2 =	 1�	'=(8)	�(,)(+)	4,,																	(14)�
,-9  

 
where 
 

   =(8) = 		 > ���?��	,! ,																(8	odd)(��,)	��,	(�?�)�	(,?�)! ,			(8		even)															(15)D	 
 
We see in eq. (14) that the contribution of d is 
implicit and only comes from the derivatives of 	�(+) (see eq. (6)). The “symmetric” contribution 62→�	is obtained by merely replacing 4 by –	4 in 
eq. (14).   
We deduce from eqs. (12-15) and =(0) = � that 
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			�� 	= 	�(+) 	+	E1 −	2	�� F ' 18! 	�(,)(+)	4,�
,-2,	even

 

 

														+	 2� ' =(8)	�(,)(+)	4,�
,-2,	even

																							(16) 
 
Using the expression of 6�→2	we can generalize the 
expression of �� for any m1 and m2, or more generally 
for a family of k types of disks ordered by blocks. 
Let us note +G =	+1 	+	HG  the unavailability of disks 
of type I, where 
 

			+1 = 	 1�'�G 		+G,
G-� 																																												(17) 

 
is the average disk unavailability. We still call  	6G→J 
the contribution when the first selected disk is of 
type i and the following block is of type j. 
Consequently,  
 			6G→J = ���K+1 +	HG +	HJ2 L						 
 

+ 1�'=(8)	�(,) K+1 + HG + HJ2 LKHG −	HJ2 L,�
,-� . 

																																(18) 
 
Finally, 
 

			��(+�, … , +,) ='�G − �� �(+G),
G-� 	 

 																												+	6�→2 +⋯+	6,→�		.														(19) 
 
Note that all the �G are assumed to be greater than S 
for eq. (19) to be valid; this implies �	 < �/8. To 
obtain a quick and good approximation of eq. (19), 
we can perform a second-order expansion in all the HG ’s. After some work, we obtain 
 			��P+1, … , +8Q ≈ �(+1) 
 																																		+12�(2)(+�)	R(∆+)2 − T2U					(20) 
where 

			(∆+)2 =	 1�	'�G(+G − +1)2																							(21),
G-�  

 
is the variance of the distribution {+G}, and 
 			T2 =	� + 16	� 	� + 1� ' P+G − +J 	Q2J	follows	G .					(22) 
 
We see that the file unavailability is equal to �(+1) 
plus corrections, the leading term of which is 
proportional to �(2)(+1). The associated prefactor is 
the sum of the variance (always positive) and of a 
negative contribution including a (S + 1) term 
characteristic of the transition zone (i.e., when S + 1 
consecutive disks are of two types). While the two 
contributions are of opposite signs, we expect the 
overall sign to be positive, and therefore �� 	> �(+1), 
because of the constraint �	 < �/8 and typical 
values of n. By keeping S fixed and increasing m, we 
would obtain the same result. When m1 = m2, the 
second-order approximation gives  
 			�� − �(+) ≃ 
 

			K1 − 4(� + 1)(� + 1)3	�	� L�ZZ(+)2 42															(23) 
 
As indicated above, we restricted ourselves to the 
case � > 2	�, so that ��	 >		�(+). The unavailability 
of the file in the two-block arrangement is greater 
than it would be for a homogeneous set of disks, of 
unavailability q.  
 
4.2. Alternate arrangement 
 

There is another simple way to deploy disks of 
unavailabilities q1 and q2, namely the alternate 
placement, represented in Figure 7. 
 

 
 
Figure 7. The alternate arrangement with [ = <\, [< =	[\ = ] 
 
Obviously, for this kind of architecture, we must 
have	�� 	= 	�2. If we consider the � + 1 disks 
selected after the first step, we only have two 
different patterns, depending on the first selected 
disk (see Figure 8). 
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Figure 8. The pattern of the S neighbors when the 
first selected disk if of type 1 or 2 
 
The only parameter that affects the form of the set of � + 1 disks is the spread factor. If it is even, and if 
the first disk selected is of type 1, we count �/2	 + 1 
disks of type 1 and �/2 disks of type 2 while if the 
spread factor is odd we have (� + 1)/2 disks of both 
types (see Figure 9).  
 

 
 

Figure 9. The number of disks of type 1 and 2 in the 
S neighbors of the first selected disk as a function of 
the parity of the spread factor 
 
If the first disk selected is of type 2, the structure is 
the same as above (interchange type 1 and type 2). �̂   
is thus the sum of two contributions: 
 			�� = 	12 (_� +	_2),																																									(24) 
 
where _� is the contribution of the ̀2 	����� 

configurations when the first selected disk is of 
type 1; likewise, _2 is the relevant contribution 
when the first disk is of type 2. As in section 4.1 
devoted to the block arrangement, we have computed 
(for different values of d, n and S) the formal 

expression of �� as a function of q1 and q2, and 
therefore of q and 4 given again by eqs. (8) and (9).  
We have been able to identify the exact expression  
 

			�� = '(−42)a�(2a)(+)(2	b)!
�c�2da��2a

c�2d
a-9 	e� − 2b� 	(�	even)1													(�	odd) D	 

 (25) 
 
where fgh is the integer part of x. As previously, we 
can restrict ourselves to a second-order 
approximation:  
 

   �� ≈ �(+) 	− i(j)(k)lj2 	> �� 						(�	odd)��2�(���) (�	even).	D			(26) 

 
In contrast to eq. (23), the second-order correction is 
always negative, and thus ��	 <		�(+). The alternate 
arrangement is performing better than the block 
arrangement. 
We have also considered more than two families of 
disks. For three families of disks arranged as q1 q2 q3 
q1 q2 q3, etc. we have not yet found a general formula 
such as eq. (25). However, we have been able to find, 

with +1 = +1+	+2++33   and  (∆+)2 = mnj?	mjj?mojp  , 

  
   �� ≈ �(+1)	  
 

					−	i(j)(k1)	(∆k)j2 	
qrs
rt �� 												(� = 3	u + 2)����	� 									(� = 3	u + 1)��2�(���) 													(� = 3	u)	

D 	(27) 
 
In the case of four families or more, even for the 
second-order corrections, the expressions become 
more complicated: there are contributions from terms 
other than (∆+)2, showing again that the placement 
of disks has an influence on ��. 
 
4.3. Discussion 
 

In the previous subsections, we have studied two 
specific disk arrangements, for which we have 
obtained the exact file unavailability ��, for arbitrary 
values of d, n, m, S, q and 4. These exact expressions 
may be computed very quickly. If we only take disk 
failures into account, the alternate arrangement gives 
better results in terms of file unavailability. �� varies 
with the arrangement of disks of unequal 
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unavailabilities, as demonstrated by eqs. (16), (19), 
(25), and Figure 10.  
In more complex arrangements, the exact calculation 
might be not so easy, if not hopeless. For this reason, 
we wish to provide reasonably accurate estimates of ��, which might prove sufficient for the design and 
assessment of data center architectures: 

• a first simple estimate is �(+1), to which �� 
reduces when all the unavailabilities +G are 
equal, of course. 

• we expect corrections to include the successive 
derivatives �(v)(+�), multiplied by prefactors 
depending on all the HG = 	+G −	+1	. Note that the 
term with l = 1 necessarily cancels because of 
the definition of  +1. Decent approximations 
could be found by keeping only the second-
order term in �(2)(+�). 

 

 
 

Figure 10. Exact values of  w =	 �̂^(x�) − <  for d = 4, 

n = 15, S = 20, m = 3000, and x = <y�z as functions 
of {: block arrangement (full red line), alternate 
arrangement (full blue line), also represented by ‘+’ 
and ‘××××’ are their respective second-order 
approximations given in eqs. (23) and (26) 
 
In order to justify this approach, we have plotted (see 
Figure 10) as a function of 4 the quantity 
 

			| = 	 ���(+1) − 1	,																																																(28) 
 
which gives a good indication of the relative error 
made by replacing �� by �(+1). We have also 
represented by ‘+’ and ‘×’ the values obtained when 
replacing �� by its second-order approximations. 
Clearly, only when 4 is large do these 
approximations differ from the exact results, 
especially in the block arrangement case; they are 
still satisfactory even when | is a few hundred 
percents. Consequently, we recommend to use 
second-order approximations to ��, which will be 
easy to compute and yet accurate enough. 

5. Conclusion 
 

In a context of intense competition in terms of 
usability, safety, and availability of Cloud services, 
we have modelled the file unavailability for a 
specific erasure-coding storage policy. This model 
amounts to a generalization of the well-known k-out-
of-n problem, to which it reduces when all the disks 
are identical.  
In the real world, however, they have different 
reliabilities. We have studied several disk 
arrangements for which the average file 
unavailability �� has been calculated exactly, and 
shown that these arrangements do matter. Our results 
indicate that while in the general case the numerical 
computation of �� may be very cumbersome or even 
downright impossible in a reasonable amount of 
time, simple second-order approximations can 
provide satisfactory estimates for operational 
purposes.  
The work presented here has been extended in two 
directions. Firstly, a more general sensitivity analysis 
of �� has been performed. Secondly, we have 
assessed another key performance index for data 
center architects and managers, namely the average 
data loss per year. These results will be discussed 
elsewhere [20]. 
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