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Abstract  
 

In this work, the Metropolis-Hastings sampling technique has been used for the parameter identification of 
Wohler curve of aluminium alloy 2024-T4. The Metropolis-Hasting algorithm is one of the most widespread 
Markov chain Monte Carlo methods for posterior distribution estimation, and it is presented with an adaptive 
formulation to estimate the probability density functions of Wohler parameters. Results are presented in terms 
of distribution shape and parameter correlations. The information about parameter distributions of Wohler 
equation is useful to prepare risk analyses based on statistical safe life approach. 
 
1. Introduction  
 

The aim of this work is to apply the consolidated 
theory of Markov chain Monte Carlo (MCMC) 
methods to identify the parameters of fatigue curves, 
commonly defined as S-N 1 curves or Wohler curves. 
In this context, data coming from specimen of 
aluminium alloy 2024-T4 are considered. MCMC 
methods, differently from other system identification 
methods that are based on maximum likelihood, 
allow describing the probability density function 
(pdf) of the inferred parameters, without any 
assumption on their shapes. The objective of the 
work is the investigation of parameter pdf with the 
Metropolis-Hastings (MH) algorithm, also called 
Random Walk Metropolis (RWM), with a critical 
analysis of the obtained results. The paper is 
organised as follows: section 2 provides a brief 

                                                 
1 The name “S-N” comes from the output-input variables 
describing the mathematical model: S is the applied stress 
(output of the model) and N is the number of load cycles 
(input of the model). 

description of the Wohler curve and the 
mathematical equation used to represent fatigue data. 
Section 3 describes the fundamentals of Markov 
chain models and a brief explanation of the 
Metropolis-Hastings algorithm. The application of 
the MH algorithm to fatigue data is presented in 
section 4, describing also the adaptive proposal 
distribution to avoid the problem of proposal 
variance selection. Section 5 shows the results with a 
critical analysis on the estimated parameters, the 
correctness of the achieved pdf and the comparison 
with consolidated nonlinear fitting methods. A 
conclusive section summarizes the work and further 
developments of this analysis. 
 
2. Wohler curve  
 

In contrast to the static strength, a large scatter 
characterizes the fatigue limit. As a result, the curves 
usually employed in fatigue analyses should be 
described in statistical terms in order to produce 
reliable results. The most used fatigue curve is the S-
N curve or Wohler curve that is able to describe the 
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three different zones of the diagram load versus 
number of load cycles: the static or quasi-static 
loading zone, the finite-life zone and the infinite life 
zone. The mathematical equation able to describe 
these three zones is presented in (1) [5], [9]. 
Obviously, other formulations that are able to 
describe only one region (zone II) or two regions 
(zones II and III) of the curve could be implemented 
in fatigue analyses. 
 
   ( ) )/1(0

mGNASS ++=        (1) 

where A, G and m are numerical constants depending 
on the material, S represents stress [MPa], N is the 
number of load cycles, S0 represents stress at infinite 
life [MPa]. Figure 1 shows the schematic diagram of 
a typical Wohler curve highlighting the three 
different regions of quasi-static loading (I), finite life 
(II) and infinite life (III) of materials. 

 

 
 

Figure 1. Example of Wohler curve in the (log N, S) 
plane. 
 
3. Markov Chain model 
 

According to [10], a First-order Markov Chain is a 
sequence of random variables ϑk (with k belonging 
to the set of natural numbers) such that the 
conditional distribution of ϑk (knowing all the 
discrete values ϑk-m with m ≥ 1) is the same as the 
conditional distribution of ϑk given only ϑk-1 (2). 
 
   )|(),...,,|( 1121 −−− ≡ kkkkk PP ϑϑϑϑϑϑ     (2) 
 
The transition kernel K drives the link between two 
subsequent random variables; it is a conditional 
probability satisfying the detailed-balance condition 
or reversibility condition of the chain (3): 
 
   )()|()()|( 111 −−− = kkkkkk fKfK ϑϑϑϑϑϑ    (3) 
 
where f(ϑk) is the stationary probability of the 
realization ϑk. However,finding the solution of 
K(ϑk|ϑk-1) is complicated. The following subsection 

presents the MH algorithm accounting for the kernel 
K satisfying eq. (3). 
 
3.1. Metropolis-Hastings sampling technique 
for parameter identifications 
 

The Metropolis–Hasting algorithm is historically the 
first and remains the most important MCMC 
algorithm. It is usually implemented to estimate 
parameter pdfs in presence of highly nonlinear 
functions and non-Gaussian distributions. 
Additionally, it estimates the noise associated to the 
observations given as input of the algorithm. It draws 
a series of dependent samples of the parameters 
according to the transition kernel K by the 
decomposition of the transition kernel itself. 
According to the MH theory, the transition kernel 
K(ϑk|ϑk-1) can be split into a proposal distribution q 
and an acceptance probability α that continue to 
satisfy (3). The splitting of the transition kernel 
becomes K(ϑk|ϑk-1)=q(ϑk|ϑk-1)α(ϑk|ϑk-1). In this 
way, the detailed balance condition change from (3) 
to (4), but the stationary distribution f(ϑ) is still 
unknown. 
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Let assume a series of independent identically 
distributed observations y depending on the value of 
ϑ through a whatever nonlinear relationship y=h(ϑ). 
If the relation h(·) is known, the conditioned 
probability of ϑ given the observations y can be 
evaluated. According to Bayes’ rule [1], the 
conditioned probability f(ϑ|y) follows the relation 
(5), where g(ϑ) is the prior probability of ϑ. The 
conditioned pdf can be evaluated by the substitution 
of f(ϑ|y) with the likelihood of ϑ given the 
observations π(ϑ|y). 
 
   )()|()()|()|( ϑϑπϑϑϑ gygyfyf ∝∝    (5) 
 
Starting from equation (4), the acceptance 
probability α(ϑk|ϑk-1) is extracted. 
 

   

( )
( ) ( )

( ) ( ) 








⋅⋅
⋅⋅

=

−−−

−

−

1,
|)(|

|)(|
min

|

111

1

1

kkkk

kkkk

kk

qgy

qgy

ϑϑϑϑπ
ϑϑϑϑπ

ϑϑα
  (6) 

 
It represents the probability to accept the k-th sample 
of ϑ given the previous sample ϑk-1. For a normally-
distributed random noise affecting the observations 
y, the likelihood of the k-th sample   π(ϑk|y) reads: 
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where φy(ϑk) is the cost function representing the 
error between the observation y and the simulation of 
the system based on the parameter sample ϑk [12], 
that is φy(ϑk)= [y-h(ϑk)]

2, while σ is the standard 
deviation of the uncertainty or noise affecting the 
observations. It is important to consider that σ 
belongs to the vector of parameter ϑk, thus a sample 
of σ is generated at each step k. The new state ϑk is 
accepted with probability α(ϑk|ϑk-1). This means the 
sample ϑk is accepted if r (random number sampled 
from a uniform distribution U[0,1]) is less than 
α(ϑk|ϑk-1); otherwise it is refused and the current 
sample remains equal to the previous one ϑk-1. At the 
end of the algorithm, the conditional mean and 
variance of ϑ can be evaluated with (8) and (9), 
respectively.  
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where ϑk are the samples selected from the Markov 
chain, k0 is the transient or burn-in period and NS is 
the number of selected steps of the Markov chain. 
Equation (10) represents the posterior distribution of 
ϑ estimated from the prior knowledge and the 
observations y. 
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4. Application of MH to fatigue data 
 

4.1. Input: experimental data 
 

Samples of 2024-T4 aluminium alloy for various 
wrought products at longitudinal direction were 
obtained from [6] and presented in Table 1. The data 
of stress S with respect to load cycles N represent the 
input of the MCMC algorithm that is the 
observations y defined in section 3. Figure 2 shows 
the data in the (logN, S) plane after the conversion2 
of stress from ksi to the international measure unit 
MPa. 
 
 
 
 
Table 1. Data for Wohler curve. 
                                                 
2 1 ksi = 6.8948 MPa 

 

sample 
ID # 

# of 
cycles 

Maximum 
stress [MPa] 

sample 
ID # 

# of 
cycles 

Maximum 
stress [MPa] 

1 4637 441 24 305936 265 
2 5454 462 25 359308 317 
3 7940 510 26 377259 255 
4 9928 456 27 412619 328 
5 11347 464 28 441700 276 
6 15393 447 29 541853 213 
7 16890 414 30 1407627 330 
8 18943 463 31 1409601 345 
9 21926 414 32 2518789 290 
10 25836 407 33 6057754 276 
11 26880 483 34 7064963 303 
12 30703 393 35 9217544 262 
13 34775 448 36 10087410 248 
14 45705 389 37 11128156 269 
15 77741 345 38 13094778 248 
16 79503 385 39 16134403 276 
17 109715 310 40 22701832 303 
18 180577 303 41 40452002 220 
19 199939 269 42 45293174 206 
20 209976 393 43 56040321 276 
21 225370 414 44 56751803 310 
22 225771 56 45 65624234 265 
23 250953 50 46 95785653 317 

 

 
 

Figure 2. Experimental data in (logN, S) plane 
 
4.2. Initialization of MH algorithm 
 

As described in section 3, the Metropolis-Hastings 
algorithm requires the initialization of the objective 
parameters, a proposal distribution from which 
samples are drawn, and a prior probability density 
function. The starting values of the parameters 
should not influence the algorithm performance. In 
fact, the MCMC assures the convergence of the 
chain in a finite number of samples. The advice here 
is to use reasonable values in order to avoid too 
many useless samples. Obviously, the prior 
distribution is connected with the values used to start 
the algorithm. Since a prior knowledge on the 
parameter distributions is not available (no expected 
values nor shape of the pdfs), uniform distributions 
are selected as prior pdfs of the interested 
parameters. 
Table 2 shows the interested parameters and the 
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corresponding distributions; the subscripts low and 
up means lower limit and upper limit, respectively. 
The uncertainty associated to the data (σ) is 
expressed in logarithmic form because it has to be 
greater than zero. 
A multivariate Gaussian pdf drives the sample 
drawing (proposal distribution). Since there is no 
initial correlation between the different parameters, 
the proposal distribution corresponds to a series of 
independent normal distributions (11). Heuristic 
considerations according to the mean values and the 
limits of the quantities drive the selection of the 
initial proposal variances. 
 
Table 2. Parameter distributions 
 

ϑ  prior pdf 

A U([Alow,Aup])=U([140,220]) 
G U([Glow,Gup])=U([22000,40000]) 
m U([mlow,mup])=U([0,1]) 
S0 U([S0low,S0up])=U([150,300]) 

log σ U([ logσlow, logσup])=U([log(10),log(100)]) 
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where MVN is multivariate normal distribution. The 
probability density function of the n-dimensional 
multivariate normal distribution is given by: 
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Although the selection of the starting mean values is 
not difficult, the proposal variance remains an open 
issue. Too large a variance produces a high ratio of 
refused samples over accepted samples, while too 
small a variance slows down the convergence of the 
chain. 
Consequently, a MH algorithm with adaptive 
proposal distribution is employed to overcome the 
problem. The selected adaptive algorithm was 
initially proposed in [8] used in [2]-[4] for fatigue 
crack growth analyses. The employment of adaptive 
proposal distribution avoids the problem reported 
above on the acceptance ratio of the samples and 
enhances the convergence properties. The algorithm 
is able to recursively update the variance of proposal 
pdf based on the last residuals of the chain. 
Nonetheless, the adaptation depends on two 
parameters, namely the memory H and frequency U 

parameters. The first one defines the number of 
samples used to calculate the residuals, while the 
second one governs the frequency of the proposal 
variance updating procedure. Table 3 shows the 
pseudo-code of the MH algorithm with adaptive 
proposal distribution. 
 
Table 3. MH algorithm with adaptive proposal pdf 
[2] 
 

1. Initialize the parameter vector �0 according to the proposal PDF. 
2. Initialize the likelihood of vector �0 given the measures y, taking 

into account the prior pdf. 
3. Initialize the matrix of the chain Θ=[ϑ0]. 
4. Set the memory of the proposal H and the frequency parameter U. 
5. For i = 1 to NS 

- Draw sample ϑi ~q(ϑ)=MVN(ϑi-1,∑) 
- Calculate a fictitious stress S=S(ϑi). 
- Evaluate the likelihood of the sample given the measure π(ϑi|y) 

according to (7) and the prior probability g(ϑi) 
- Accept the sample ϑi with probability 
   α(ϑi|ϑi-1) defined in (6). 
- If the remainder of i/U =  0 

Store the last H residuals of the chain: 
R = res(ΘH) 
Generate covariance matrix of the proposal: 
∑ = cd2/(H-1) RRT 

  Endif 
Endfor 

6. Erase the burn-in period and select far-between samples to avoid 
the possibility of correlated samples from the chain 

 
4.3. Estimation of Wohler curve parameters  
 

The algorithm receives as input the data (Ni, Si) 
representing the failure load cycle and the stress 
applied to the i-th specimen, respectively. The length 
of the chain is heuristically selected on 50000 
samples. The memory and frequency parameters are 
set equal to 1200, because of the nonlinearity of the 
Wohler curve, as suggested in [8]. The limits of the 
prior pdf are selected according to reasonable range 
of the quantities of interest as well as the first values 
of the chain (see Table 2). The pdfs of the parameters 
can be estimated from the resulting samples of the 
chain, as well as the standard deviation associated to 
the observations. Figures 3-4 show the posterior 
distribution of the parameters and noise standard 
deviation, respectively. 
 

 
 

Figure 3. Posterior distributions of parameters. 
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Figure 4. Distribution of noise standard deviation. 
 
4.4. Critical analysis of results  
 

As is clearly visible from Figure 3, the two posterior 
distributions for A and G are close to uniform 
distributions in the whole range covered by the prior 
pdf. The result does not change by performing 
several simulations with different reasonable limits 
of the prior distributions. This preliminary result 
shows that the Wohler curve is only slightly affected 
by the averages of these two parameters. 
The exaggerated enlarging of the uniform prior pdf 
produces unreasonable values for the two 
parameters, and then the bounds proposed in Table 4 
can be considered reasonable limits for the quantities 
under investigation. It is clear that MH algorithm can 
be used as a valid tool for Sensitivity Analysis (SA): 
the main outcome here is that the used model is more 
sensitive to m and S0 parameters than to A and G [7]. 
Nevertheless, further analyses should be made in 
order to understand the effects of A and G on the 
Wohler equation; for instance local & global SA, 
correlation coefficient methods, ANOVA or Fourier 
Amplitude Sensitivity Test (FAST) [7]. 
 
Table 4. Estimated statistical features of parameters 
 

ϑ A G m S0 σ 

µϑ 185 29560 0.51 251.1 40 

σϑ
2
 

415 2.5E+7 3E-4 114.1 18.8 

 

ρϑi,ϑj A G m S0 

A 1 0.04 0.62 0.03 

G 0.04 1 -0.38 -0.25 

m 0.62 -0.38 1 0.72 

S0 0.03 -0.25 0.72 1 

 

 

 

 

 

 

 
 

Figure 5. Gaussian-mixture fit of estimated 
parameters 
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Figure 3 does not show the correlation between the 
parameters of the curve, available from the MH 
algorithm. In order to appreciate the correlation 
between the parameters obtained by the algorithm, a 
Monte Carlo Sampling (MCS) is performed and the 
results are shown using the Gaussian Mixture 
Distribution (GMD) function. The GMD method 
allows estimating multivariate distributions as a 
summation of several Gaussian pdf. The commercial 
routine implemented in Matlab© is used to show the 
multivariate distributions of the Wohler parameters. 
A series of samples is extracted from the estimated 
pdf of the parameters, and the probability of these 
samples is superimposed to the graph. Since the 
parameters A and G are not normally-distributed, 
multivariate Gaussian functions are of course a rough 
approximation of the real distributions. However, it 
is enough to underline the presence of correlations 
between the parameters. Table 4 reports mean values 
µϑ, variances σϑ

2 and correlations ρϑi,ϑj assuming 
normally-distributed parameters. 
As visible in Tables 4 and Figure 5, a clear 
correlation exists between the infinite life stress S0 
and the exponent of the Wohler curve m. Since both 
of them are normally distributed, the graph can be 
considered a correct representation of these two 
parameter distributions. Looking at the other graphs, 
a slight correlation may exists between m and A, and 
other slight correlations affect the couples (S0, G) and 
(m, G). However, the parameters G and A are not 
normally distributed and the actual mean values and 
dispersion indexes should be addressed before 
evaluating the correlation with other parameters. 
Even though the previous subsection assesses the 
averages, variances and correlations among the 
parameters, the correctness of the results are not 
proved. So, the estimated pdf will be used to produce 
approximated average and confidence boundaries for 
the output of the Wohler equation that is the stress S 
as a function of load cycles N. 
 
4.4.1 Statistical definition of Wohler curve  
 

The statistics related to the Wohler curve is 
mandatory in a fail-safe design framework. The 
statistics of Wohler parameters should be used to 
assess the global variability associated to the curve, 
in order to produce the probability of failure of 
components subjected to a particular stress S*, or 
employed for a particular number of load cycles N*. 
However, the nonlinearity of the formulation in (1) 
makes difficult the closed form solution of the mean 
and variance associated to the stress S. An 
approximation indicated in the literature as the delta 
method is proposed to overcome the problem [11]: It 
is a simple first order Taylor expansion of the 

nonlinear equation in order to approximate the mean 
and the variance associated to the Wohler curve. Let 
N and S be the input and the output of a general 
nonlinear function, while ϑ is the vector of 
parameters affecting the nonlinear relationship, that 
is S=S(ϑ,N). The mean value of S is simply 
calculated using the averages of the parameters (12), 
while the variance follows the form in (13). 
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where the symbols µ and σ indicates mean and 
variance as in the common notation, taking care that 
σϑi,ϑj = σϑi

2 when i=j . According to the formulation 
in (1), the explicit form of the statistical Wohler 
curve becomes (14) and (15) for mean and variance, 
respectively. 
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The explanation of all the quantities in (15) is 
avoided for brevity. All the derivatives of the 
function are evaluated at ϑ = µϑ. Once the mean and 
variance for the Wohler curve are available, the 
confidence boundaries assume the usual form in (16). 
 
   SSS ασµ ±=infsup,     (16) 

 
where the subscripts sup, inf in (16) are the upper 
and lower boundaries and α is the percentile value 
driving the width of the confidence band. Figure 6 
shows the confidence bands related to 95% 
probability (α = 1.96). 
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Figure 6. Estimated Wohler curve and confidence 
bands calculated via the delta method [11]. 
 

 
 

Figure 7. Comparison between nonlinear fitting and 
Metropolis-Hastings estimation of Wohler curve. 
 
Table 5. Expected values of ϑ using a nonlinear 
fitting algorithm and MH algorithm 
 

ϑ  ϑµ  

Nonlinear fitting 
ϑµ  

Metropolis-Hastings 

A  190.18 185.42 

G [cycles] 26364 29560 
m  0.519 0.512 

0S [MPa] 252.86 251.43 

σ [MPa] - 40 

 
As shown in Figure 6, the statistical Wohler curve 
seems to be in agreement with the experimental data. 
Although it is obvious for the expected value, the 
satisfied results reflects also in reasonable confidence 
boundaries using the variances coming from the MH 
algorithm. Of course, the achieved results introduced 
few approximations: the delta method assumes 
Gaussian pdf for each parameter, while A and G have 
uniform pdf (at least for the results obtained in this 
work); moreover, the first order Taylor expansion is 
representative of the nonlinear function S(ϑ,N), but 
is only approximation thereof. 
 
4.4.2 Comparison with nonlinear fitting  
 

The most common fitting technique is the nonlinear 
regression based on Levenberg-Marquardt algorithm. 
It has the restricting hypothesis of normally 
distributed parameters (like the hypothesis made in 

the calculation presented above), because it is not 
able to evaluate the shape of the parameters pdfs. 
The nonlinear fitting subroutine available in 
Matlab© is used hereafter to analyze the results of 
the MH algorithm (Figure 7). Figures 6-7 show quite 
similar results. The curves are very close to each 
other, even if the parameters A and G estimated using 
the Random Walk Metropolis and the nonlinear 
fitting are slightly different (see Table 5). The 
infinite life stress S0 and the m are comparable using 
the two methods. If two parameters are correctly 
estimated, probably the fitting procedure made with 
the MH algorithm is correct, and the values of the 
two parameters A and G (or the combination of 
them) have less influence on the Wohler curve than 
the other two parameters. This is in agreement with 
the sensitivity considerations made in section 4.4. 
 
5. Conclusion 
 

The possibility to use Metropolis-Hastings sampling 
technique for parameter identifications has been 
assessed in this work. MH allows to draw samples 
from the posterior density function (the probability 
of model parameters conditioned on the available 
data), thus representing both a statistical tool for the 
estimation of parameter uncertainty as well as a valid 
method for the updating of the prior knowledge on 
model parameters. As highlighted from the results, 
the parameters A and G show a very wide range of 
reasonable values with a uniform (or almost uniform) 
probability density. The validity of the fitting is 
proved by the generation of confidence boundaries 
through delta method and the comparison with the 
consolidated nonlinear fitting procedure based on the 
Levenberg-Marquardt algorithm (available as a 
standard subroutine in Matlab©). 
Therefore, further investigation on the Wohler 
formulation in (1) should be made in order to 
describe the influence of the two parameters A and G 
to the curve, their probability density functions and 
their correlations with the other parameters. One 
possibility is that the formulation used to describe the 
curve could be simplified using only three 
parameters instead of four, which means establishing 
a dependence of one parameter from the other one, 
for instance A as a function of G or vice-versa. 
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