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Abstract

In this work, the Metropolis-Hastings sampling teicjue has been used for the parameter identificatio
Wohler curve of aluminium alloy 2024-T4. The Metotip-Hasting algorithm is one of the most widesprea
Markov chain Monte Carlo methods for posterior ritisition estimation, and it is presented with aagile
formulation to estimate the probability density dtions of Wohler parameters. Results are presenteatms
of distribution shape and parameter correlatiortze ihformation about parameter distributions of Wéoh
equation is useful to prepare risk analyses basedatistical safe life approach.

1. Introduction description of the Wohler curve and the
mathematical equation used to represent fatigue dat

The aim of this work is to apply the consolidated gaction 3 describes the fundamentals of Markov
theory of Markov chain Monte Carlo (MCMC) (hain models and a brief explanation of the

methods to identify the parameters of fatigue C8IVe \1o(ropolis-Hastings algorithm. The application of
commonly defined a§-N" curves or Wohler curves. 1o MH algorithm to fatigue data is presented in

In this context, data coming from specimen Of geciion 4, describing also the adaptive proposal
aluminium alloy 2024-T4 are considered. MCMC distribution to avoid the problem of proposal

methods, differently from other system identifioati 5 iance selection. Section 5 shows the results avit

methods that are based on maximum likelihood,q jsica analysis on the estimated parameters, the
allow describing the probability density function . ectness of the achieved pdf and the comparison
(pdf) of the inferred parameters, without any i consolidated nonlinear fitting methods. A

assumption on their shapes. The objective of the.qnq|ysive section summarizes the work and further
work is the investigation of parameter pdf with the developments of this analysis.

Metropolis-Hastings (MH) algorithm, also called

Randqm Walk Metrop_olls (RWM), with a critical 2 Wohler curve

analysis of the obtained results. The paper is

organised as follows: section 2 provides a briefln contrast to the static strength, a large scatter
characterizes the fatigue limit. As a result, theves

. _ . usually employed in fatigue analyses should be
The name S-N' comes from the output-input variables described in statistical terms in order to produce
describing the mathematical mod8lis the applied stress  gliable results. The most used fatigue curveassth

(output of the model) anMl is the number of load cycles N cyrve or Wohler curve that is able to describe the
(input of the model).
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three different zones of the diagram load versuspresents the MH algorithm accounting for the kernel
number of load cycles: the static or quasi-staticK satisfying eq. (3).

loading zone, the finite-life zone and the infinlife

zone. The mathematical equation able to describg.1. Metropolis-Hastings sampling technique
these three zones is presented in (1) [S], [9]for parameter identifications

Obviously, other formulations that are able to _ _ _ o
describe only one region (zone 1) or two regionsThe Metropolis—Hasting algorithm is historicallyeth

(zones Il and 11l) of the curve could be implemente first and remains the most important MCMC
in fatigue analyses. algorithm. It is usually implemented to estimate

parameter pdfs in presence of highly nonlinear
functions and non-Gaussian distributions.
= + +G)"
S=5 A/(N G) ) (1) Additionally, it estimates the noise associatedhi

whereA, G andm are numerical constants depending ©PServations given as input of the algorithm. &vis
a series of dependent samples of the parameters

on the materialS represents stress [MP4dy, |s. th.e. according to the transiton kerneK by the
number of load cyclesy, represents stress at infinite decomposition of the transition kernel itself.
life [MPa]. Figure 1shows the schematic diagram of According to the MH theory, the transition kernel
a typical Wohler curve highlighting the three K(\[J«.1) can be split into a proposal distributign

different regions of quasi-static loading (1), fmiife a”f_' fan ( gcc?rlfr’]tancel_ti?mbat;i"g thf‘t cq?tinuek to I
C . satisfy (3). The splitting of the transition kerne
(1N and infinite life (1) of materials. becomes K(Ud 10)=a( i ka( d ). In - this
way, the detailed balance condition change from (3)
) ‘ ‘ ‘ to (4), but the stationary distributioff)) is still
] unknown.

10

q(ﬂk—l |79k)m('9k—1 |29k)[ f(’9k)

4
= Q(ﬁk | z9k—1) B7(’9k |’9k—1) Cf (’9k—1) @

S [MPa]

Let assume a series of independent identically

10° o o e o distributed observationg depending on the value of
Nleycles] '] through a whatever nonlinear relationsiigh(').

Figure 1.Example of Wohler curve in tigog N, S) If the relation h(-) is known, the conditioned
plane. probability of [1 given the observationg can be

evaluated. According to Bayes’' rule [1], the
3. Markov Chain modd conditioned probabilityf((1]y) follows the relation

_ _ o (5), whereg(L)) is the prior probability ofll. The
According to [10], a First-order Markov Chain is a conditioned pdf can be evaluated by the substitutio

sequence of random variableg (with k belonging  of f(OJy) with the likelihood of O given the
to the set of natural numbers) such that thegpservations(C]y).

conditional distribution of [, (knowing all the

discrete values'i., with m > 1) is the same as the  f(9|y) O f(y|9)g@) O n(d|y)g(d) (5)
conditional distribution of 1y given only(, (2).

: Starting from equation (4), the acceptance
P | 9ka:F-2r+81) = P | ) ) probability a( | [x.1) is extracted.

The transition kerneK drives the link between two al@ 19..)=

subsequent random variables; it is a conditional
probability satisfying the detailed-balance coruiti ( LCANIEER CREN 1} (6)
n(ﬂk—l | Y) [9(H-1) Bt1(’9k |’9k—1)

or reversibility condition of the chain (3):

K@ 19 F (D) = K& 1) T (Fin) (3) It represents the probability to accept kath sample
of [J given the previous sample,.;. For a normally-
where f([)) is the stationary probability of the distributed random noise affecting the observations
realization [J,. However,finding the solution of VY, the likelihood of thé&-th sample z([],]y) reads:
K([W k1) is complicated. The following subsection
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77(19 ) _ 1 - ¢y(79k) 7 sample| # of Maximum sample # of Maximum
k | y)= \/ETU' ex 20_2 ! ( ) ID # cycles | stress [MPa]| ID# cycles | stress [MPa
1 4637 441 24 30593 265
2 5454 462 25 359308 317
where ¢y(LCy) is the cost function representing the[ 3 7940 510 26 377259 255
error between the observatigrand the simulation of 4 9928 456 27 412619 328
the system based on the parameter sampl§l2], 5 | 11347 464 28 441700 276
that is goy(Dk)z[y—h(Dk)]z, while ¢ is the standard 6 15393 447 29 541853 213
deviation of the uncertainty or noise affecting the| 7 16890 414 30 | 140762F 330
observations. It is important to consider that 8 | 18943 463 31 | 1409608 345
belongs to the vector of parametey, thus a sample 9 | 21926 414 32 | 2518789 290
of ¢ is generated at each stepThe new statel, is 10 | 25836 407 33 | 605775% 276
accepted with probability((1| i.1). This means the |- | 26880 483 34 | 7064968 303
; , 12 | 30703 393 35 | 9217544 262
samplel]y is accepted if r (random number sampled
; . , 13 | 34775 448 36 | 10087410 248
from a uniform distribution U[0,1]) is less than — 1700 389 37 | 11128186 269
o Ck-1); otherwise it is refused and the currentf— =T 777,; 345 38 | 13004718 248
sample remains equal to the previous oRe. At the 16 | 79503 385 39 | 16134403 276
end of the algorithm, the conditional mean and 17 [109715 310 20 | 22701832 303
variance ofJ can be evaluated with (8) and (9), 18 | 180577 303 41 40452002 220
respectively. 19 | 199939 269 42 | 45293174 206
20 | 209976 393 43 | 56040321 276
1 Ng 21 | 225370 @ 414 44 | 56751808 310
E@y)s———— Zz?k (8) 22 | 225771 56 45 | 65624234 265
Ns —Ko 1 oot 23 | 250953 50 46 | 95785658 317
1 & 2
V@Y= 2[E-E@IY)] ©)
S 0 k=k,+1 5000 b .
450} ST
where 1, are the samples selected from the Markov _, .
. . . : : . &' 400r Y
chain k; is the transient or burn-in period ahd is s
the number of selected steps of the Markov chain®** -
Equation (10) represents the posterior distribugbn 300 * o, 0.
[1 estimated from the prior knowledge and the 2so T 1
observationy. 2001, . - S S
10 10 10 10 10 10
N [cycles]

~ — 2 _
(1) = plusy =E@1Y).0g, _V(19|y)) (10)  Figure 2.Experimental data in (I0g 9 plane

4. Application of MH to fatigue data 4.2. Initialization of MH algorithm

As described in section 3, the Metropolis-Hastings
algorithm requires the initialization of the objeet
parameters, a proposal distribution from which
samples are drawn, and a prior probability density
function. The starting values of the parameters
should not influence the algorithm performance. In
fact, the MCMC assures the convergence of the
chain in a finite number of samples. The adviceeher
is to use reasonable values in order to avoid too
many useless samples. Obviously, the prior
distribution is connected with the values usedi&ot s
the algorithm. Since a prior knowledge on the
parameter distributions is not available (no expect
values nor shape of the pdfs), uniform distribution
are selected as prior pdfs of the interested
parameters.

Table 2 shows the interested parameters and the

4.1. Input: experimental data

Samples of 2024-T4 aluminium alloy for various
wrought products at longitudinal direction were
obtained from [6] and presentedTable 1 The data
of stressSwith respect to load cyclés represent the
input of the MCMC algorithm that is the
observations/ defined in section 3rigure 2 shows
the data in the (Idg, § plane after the conversion
of stress from ksi to the international measurd uni
MPa.

Table 1 Data for Wohler curve.

21 ksi= 6.8948 MPa
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corresponding distributions; the subscriptev and  parameters. The first one defines the number of
up meanslower limit andupper limit respectively. samples used to calculate the residuals, while the
The uncertainty associated to the datg (s second one governs the frequency of the proposal
expressed in logarithmic form because it has to bevariance updating procedur@able 3 shows the
greater than zero. pseudo-code of the MH algorithm with adaptive
A multivariate Gaussian pdf drives the sample proposal distribution.

drawing (proposal distribution). Since there is no

initial correlation between the different paramster Table 3 MH algorithm with adaptive proposal pdf

the proposal distribution corresponds to a serfes o[2]

mdepende_nt normal 'dlstrlbutlons (11). Heuristic 1. Initialize the parameter vect@i, according to the proposal PDF.
considerations according to the mean values and the. initialize the likelihood of vectofl, given the measuras taking
limits of the quantities drive the selection of the| intoaccountthe prior pdf.

initial proposal variances. i ggigzen:r;%?gtg‘(t?\feﬂ;)?ocphoeig;[n]t.he frequency parametér
5. Fori= 1toNs

Table 2 Parameter distributions - Draw sample ) ~q()=MVN('li1,2)
- Calculate a fictitious stre&=5 ;).

- - Evaluate the likelihood of the sample given theasurer(Lily)
U prior pdf according to (7) and the prior probabildg/1;)
- A t th le;; with probabili
A [ UAquA)=U([120.220] Accept he sampi wih probabily
G U([Giow Gugl) =U ([22000,40000]) - If the remainder ofU = 0
m U([(MowMu) =Y ([0,1]) Store the last H residuals of the chain:
S | U((SuowSud)=U ([150,300]) R=re30,) o |
lo U([lo ,lo =U([log(10),log(100 enerate covariance matrix of the proposal:
g0 | U([logaiow, l0go,])=U ([log(10),log(100)]) > e o) R
~ Endif
o 0 0 0 0 Endfor
Ha ) 11 6. Erase the burn-in period and select far-betweermpkento avoid
U 0 og 0 0 0 ( ) the possibility of correlated samples from the phai
G
q@)=MWVN g=|y |Z=[{0 0 o7 0 O _ )
s, o 0 0 o’ 0 4.3. Estimation of Wohler curve parameters
S
Hioas 0 0 0 0 0y, The algorithm receives as input the dabd, (S)

representing the failure load cycle and the stress

whereMVN is multivariate normal distribution. The @pPplied to the-th specimen, respectively. The length

probability density function of then-dimensional ©f the chain is heuristically selected on 50000

multivariate normal distribution is given by: samples. The memory and frequency parameters are
set equal to 1200, because of the nonlinearityhef t

PN Wohler curve, as suggested in [8]. The limits o th
1 e U0 prior pdf are selected according to reasonableerang

JdetY " of the quantities of interest as well as the fitgues
of the chain (se@able 3. The pdfs of the parameters

Although the selection of the starting mean valises €an be estimated from the resulting samples of the
not difficult, the proposal variance remains anrope chain, as well as the standard deviation assoctated

issue. Too large a variance produces a high rétio ot€ observationsFigures 3-4 show the posterior
refused samples over accepted samples, while todistribution of the parameters and noise standard
small a variance slows down the convergence of th&l€viation, respectively.

chain. 0015 g2 10°

Consequently, a MH algorithm with adaptive .
proposal distribution is employed to overcome theg omﬁ\/\ \
problem. The selected adaptive algorithm was

initially proposed in [8] used in [2]-[4] for fatige “®%0 e 10 200 20 %2 25 3 35 4

FOxu2) =

crack growth analyses. The employment of adaptive * 004 S
proposal distribution avoids the problem reported

above on the acceptance ratio of the samples an "‘éw 0.2

enhances the convergence properties. The algorithr

is able to recursively update the variance of psapo Ba T os Tos o7 o 5 o 300

pdf based on the last residuals of the chain.
Nonetheless, the adaptation depends on twd-igure 3 Posterior distributions of parameters.
parameters, namely thrmemoryH andfrequencyU
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Figure 4.Distribution of noise standard deviation.

4.4. Critical analysis of results

As is clearly visible frontigure 3 the two posterior
distributions for A and G are close to uniform
distributions in the whole range covered by therpri
pdf. The result does not change by performing
several simulations with different reasonable kmit
of the prior distributions. This preliminary result
shows that the Wohler curve is only slightly aftstt
by the averages of these two parameters.

The exaggerated enlarging of the uniform prior pdf
produces unreasonable values for the two
parameters, and then the bounds proposédlite 4
can be considered reasonable limits for the quesitit
under investigation. It is clear that MH algorittman

be used as a valid tool for Sensitivity Analysi&\(S
the main outcome here is that the used model i€ mor
sensitive tan andS, parameters than # andG [7].
Nevertheless, further analyses should be made in
order to understand the effects Afand G on the
Wohler equation; for instance local & global SA,
correlation coefficient methods, ANOVA or Fourier
Amplitude Sensitivity Test (FAST) [7].

Table 4.Estimated statistical features of parameters

0 A G m| S o
u 185 29560 051| 2511 40
99| a15 | 25e+7| 3e4| 1141 184

P A G m S

A 1 004 | 062 003

G 0.04 1 -0.38| -0.25

m 062 | -0.38 1 0.72

S 003 | -025| o072 1

x 10
° samples
®© gmpdf |

G [cycles]
» >
© o

N
o

N

5 L I L
1'1’40 150 160 170 180 190 200 210 220 230 240 250
A

samples
@© gm pdf

0.45

140 150 160 170 180 190 200 210 220 230 240 250

> samples
® gm pdf

20 I L 1 I I I 1 I )
“M40 150 160 170 180 190 200 210 220 230 240 250
A

samples
® gm pdf
0.55
g 05
0.45]
. . . . .
0'1.5 2 25 3 35 4 4.5 5
G 4
x10
300
> samples
® gm pdf
280
= 2608
o
£
°
240~
220~
200 . . , . .
15 2 25 3 35 4 4.5 5
G 4
x10
300,
samples
® gm pdf

220

200
“04 042 044 046 048 05 052 054 056 058 06
m

Figure 5.Gaussian-mixture fit of estimated
parameters
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Figure 3 does not show the correlation between thenonlinear equation in order to approximate the mean
parameters of the curve, available from the MHand the variance associated to the Wohler curve. Le
algorithm. In order to appreciate the correlationN and S be the input and the output of a general
between the parameters obtained by the algorithm, aonlinear function, while (1 is the vector of
Monte Carlo Sampling (MCS) is performed and the parameters affecting the nonlinear relationshigf th
results are shown using the Gaussian Mixtureis S=S(J,N). The mean value ofS is simply
Distribution (GMD) function. The GMD method calculated using the averages of the parametejs (12
allows estimating multivariate distributions as a while the variance follows the form in (13).
summation of several Gaussian pdf. The commercial
routine implemented in Matlab® is used to show the s = S(Hs.N)
multivariate distributions of the Wohler parameters ) 3S(3, N)| 3S(3, N)|
A series of samples is extracted from the estimated Ys =ZZ Ty (13)
e |, 99 )
pdf of the parameters, and the probability of these b :
samples is superimposed to the graph. Since th
parametersA and G are not normally-distributed,
multivariate Gaussian functions are of course ghou
approximation of the real distributions. However, i
is enough to underline the presence of correlation
between the parameteiG@able 4reports mean values
o, variancess > and correlationg,;j assuming
normally-distributed parameters.

(12)

|19:M9

fhere the symbolg: and ¢ indicates mean and
variance as in the common notation, taking care tha
o = ol wheni=j. According to the formulation

in (1), the explicit form of the statistical Wohler
Rurve becomes (14) and (15) for mean and variance,
respectively.

As visible in Tables 4 and Figure 5 a clear Hs = | 1+ Ha # (14)
correlation exists between the infinite life stre&ks (N + )
and the exponent of the Wohler cumve Since both 2

of them are normally distributed, the graph can be Is ,
considered a correct representation of these two [9S)? 2, (9S 2 2[0S 2 (98 2,
parameter distributions. Looking at the other ggaph | 3a) 7» | 3G e s, s Tl om) Im
a slight correlation may exists betwemrandA, and

Ops,

other slight correlations affect the coupl& G) and Lo 0S)0S), 9SS} S
(m, G). However, the parametefd and A are not oA\ aG ) *°  Tea) as,

normally distributed and the actual mean values and
dispersion indexes should be addressed before +2(asj(§jaAm+ (ﬁj(EJJG%JF
evaluating the correlation with other parameters. om G\ 0S ) ™
Even though the previous subsection assesses the S 3S s Y 3s
averages, variances and correlations among the +2(—J(—j Gm+z(_J(_jJSo,m (15)
parameters, the correctness of the results are not 9G \om 0S, \.om

proved. So, the estimated pdf will be used to pcedu

approximated average and confidence boundaries foFhe explanation of all the quantities in (15) is
the output of the Wohler equation that is the st®s avoided for brevity. All the derivatives of the

as a function of load cycléé function are evaluated at = x,. Once the mean and
variance for the Wohler curve are available, the

4.4.1 Statistical definition of Wohler curve confidence boundaries assume the usual form in (16)

The statistics related to the Wohler curve is Supint = Hs £ 00 (16)

mandatory in a fail-safe design framework. The
statistics of Wohler parameters should be used to

assess the global variability associated to theecur Where the subscriptsup inf in (16) are the upper
in order to produce the probability of failure of and lower boundaries andis the percentile value

components subjected to a particular strEssor driving the width of the confidence banEigure 6

employed for a particular number of load cydés shows _ _the confidence bands related to 95%
However, the nonlinearity of the formulation in (1) Probability ¢:= 1.96).

makes difficult the closed form solution of the mea

and variance associated to the streSs An

approximation indicated in the literature as théade

method is proposed to overcome the problem [11]: It

is a simple first order Taylor expansion of the
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Figure 6.Estimated Wohler curve and confidence
bands calculated via the delta method [11].
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Figure 7.Comparison between nonlinear fitting and
Metropolis-Hastings estimation of Wohler curve.

Table 5. Expected values of! using a nonlinear
fitting algorithm and MH algorithm

9 Hs Hs
Nonlinear fitting | Metropolis-Hastings
A 190.18 185.42
G [cycles] 26364 29560
m 0.519 0.512
S [MPa] 252.86 251.43
0 [MPa] 40

As shown inFigure 6 the statistical Wohler curve
seems to be in agreement with the experimental dat
Although it is obvious for the expected value, the
satisfied results reflects also in reasonable denite

boundaries using the variances coming from the MH

algorithm. Of course, the achieved results intreduc
few approximations: the delta method assume
Gaussian pdf for each parameter, wiilandG have
uniform pdf (at least for the results obtained hist
work); moreover, the first order Taylor expansien i
representative of the nonlinear functigfil,N), but

is only approximation thereof.

the calculation presented above), because it is not
able to evaluate the shape of the parameters pdfs.
The nonlinear fitting subroutine available in
Matlab®© is used hereafter to analyze the results of
the MH algorithm Figure 7). Figures 6-7show quite
similar results. The curves are very close to each
other, even if the parametegksandG estimated using
the Random Walk Metropolis and the nonlinear
fitting are slightly different (seeTable 5. The
infinite life stressS and them are comparable using
the two methods. If two parameters are correctly
estimated, probably the fitting procedure made with
the MH algorithm is correct, and the values of the
two parametersA and G (or the combination of
them) have less influence on the Wohler curve than
the other two parameters. This is in agreement with
the sensitivity considerations made in section 4.4.

5. Conclusion

The possibility to use Metropolis-Hastings sampling
technique for parameter identifications has been
assessed in this work. MH allows to draw samples
from the posterior density function (the probatilit
of model parameters conditioned on the available
data), thus representing both a statistical tooklie
estimation of parameter uncertainty as well aslia va
method for the updating of the prior knowledge on
model parameters. As highlighted from the results,
the parameteré and G show a very wide range of
reasonable values with a uniform (or almost uniform
probability density. The validity of the fitting is
proved by the generation of confidence boundaries
through delta method and the comparison with the
consolidated nonlinear fitting procedure basedhen t
Levenberg-Marquardt algorithm (available as a
standard subroutine in Matlab®©).

Therefore, further investigation on the Wohler
formulation in (1) should be made in order to

Yescribe the influence of the two parameteendG

to the curve, their probability density functionsda
their correlations with the other parameters. One
possibility is that the formulation used to deseribe
curve could be simplified using only three

Sparameters instead of four, which means estabtishin

a dependence of one parameter from the other one,
for instanceA as a function o6 or vice-versa.
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