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Abstract 
 

In the paper there are presented basic concepts and some results of the theory of semi-Markov decision 
processes. The optimization problem for the infinite duration SM process is connsider in the paper. The 
Howard algoritm which enables to find the optimal stationary strategy is also discussed here. The algorithm is 
applied in a decision problem concerning  the two components renewable series system is. It is also shown that 
this algorithm is equivalent to the some linear programing problem. 
 
1. Introduction 
 

Semi-Markov decision processes theory delivers 
methods which give the opportunity to control an 
operation processes of the systems. In such kind of 
problems we choose the most rewarding process 
among some alternatives available for the operation. 
We  investigate the infinite duration SM decision 
processes. The Howard algorithm modified by Main 
and Osaki is applied for finding an optimal stationary 
policy for the kind of processes. This algorithm is 
equivalent to the some problem of linear programing. 
Semi-Markov decision processes theory was 
developed by Jewell [10], Howard [7]-[9], Main and 
Osaki [13], Gercbakh [4]. Those processes are also 
discussed in [5] and [6] . 
 
2. Semi-Markov decision processes 
 

Semi-Markov (SM) decision process is a SM process 
with a finite states space S = {1,…, N} such that its 
trajectory depends on decisions which are made at an 
initial instant and at the moments of the state 
changes. We assume that a set of decision in each 
state i, denoting by Di, is finite. To take a decision 

iDk ∈ , means to select k-th row among the 
alternating rows of the semi-Markov kernels.  
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If an initial state is i and a decision (alternative) 

iDk ∈  is chosen at initial moment then there is 
determined a probabilistic mechanism of a the first 
change of the state and the evolution of the system 

on the interval ).,0[ )(
1

kτ  The mechanism is defined 

by a transition probability  (1). The decision iDk ∈  

at some instant )(k
nτ  determines the evolution of the 

system on the interval ).,[ )(
1

)( k
n

k
n +ττ  More precisely, 

the decision ii Dkn ∈=)(δ  means, that according to 

the distribution ),:( )( Sjp k
ij ∈  there is selected a state 

j for which the process jumps at the moment ,)(
1

k
n+τ  

and the length of the interval ).,[ )(
1

)( k
n

k
n +ττ  is chosen 

according to distribution given by the CDF ).()( tF k
ij  

A sequence of decision at the instant )(k
nτ  
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is said to be a  policy for the stage n. A sequence of 
polices  
 

,...}2,1,0:)({ == nnd δ                                            (3) 
 
is called a  strategy. 
We assume that the strategy has the Markov property 
- it means that for every state Si ∈  a decision 
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ii Dn ∈)(δ  does not depend on the process evolution 

until the moment )(k
nτ . If ii n δδ =)( , then it is called 

a stationary decision. This means that the decision 
does not depend on n. The policy consisting of 
stationary decisions is called a stationary policy. 
Hence a stationary policy is defined by the sequence 

).,...,( 1 Nδδδ =  Strategy that is a sequence of 
stationary policies is called a stationary strategy.  
To formulate the optimization problem we have to 
introduce the reward structure for the process. We 
assume that the system which occupies the state  
i when a successor state is j, earns a gain (reward) at 
a rate  
 

   ,,),()( Sjixr k
ij ∈ iDk ∈  

 
at a moment  x of the entering state i for a decision 

iDk ∈ . The function )()( xr k
ij  is called the “yield 

rate” of state i at an instant x when the successor 
state is j and k is a chosen decision [9]. A negative 

reward at a rate )()( xr k
ij  denotes a loss or a cost of 

that one. A value of a function  
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denotes the reward that the system earns by spending 
a time t in a state i before making a transition to state 
j, for the decision iDk ∈ . When the transition from 
the state i to the state j for the decision k is actually 
made, the system earns a bonus as a fixed sum. The 
bonus is denotes by 
 

   ,,),()( Sjixb k
ij ∈ iDk ∈  

 
A number  
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is an expected value of the gain that is generated by 
the process in the state i at one interval of its 
realization for the decision iDk ∈ . 
In this paper we suppose that  
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From (5) we obtain  
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where )( )()( k
ij

k
ij TEm =  denotes the expectation of the 

holding time of the state i if the successor state is j. 

Moreover we suppose  
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Now the equality (5) takes the form 
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3. Optimization problem for infinite duration 
process 
 

We formulate the optimization problem of a semi-
Markov process on infinite interval ),0[ ∞ . This 
problem was investigated by Howard [9] and by 
Mine and Osaki [13]. It is known as decision 
problem without discounting. 
 
3.1. Hovard algorithm 
 

We assume that considered semi-Markov decision 
process with a finite state space S = {1,…, N}  satisfy 
assumption of the limiting theorem from [6], [11], 
[12]. 
The criterion function  
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means the gain per unit of time as a result of a long 
operating system. The numbers ),(δπ i  Si ∈ , 
represent the stationary distribution of the embedded 
Markov chain of the semi-Markov process defined 
by the kernel  
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It means that for every decision iDk ∈  those 
probabilities satisfy the following linear system of 
equations  
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is an expected value of a waiting time in a state i, for 
an decision (alternative) Dk ∈ . 
A stationary policy δ* is said to be optimal if it 
maximize the gain per unit of time: 
 

   )].([max)( * δδ gg
d
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In [13] it is proved that the optimal stationary 
strategy there exists. In [9] and [13] there is 
presented Howard Algorithm which enables to find 
the optimal stationary strategy. Here we present the 
Howard Algorithm using our own notation. 
 
The Algorithm 
    1. Data   
        - Sets of decisions (alternatives) 
 
   },,,...2,1{, NSiDi =∈  
 
        - Set of functions definig the semi-Markov 
decision processes 
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k
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        - Sets of functions that define the unit gains  
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 2. Initial calculation procedure 
    Compute  according to (7), (8) and (9) 
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for each decision iDk ∈ , ., Sji ∈  
 
    3.    Policy Evaluation 
For the present policy ),,...,( 1 Nδδδ =  ii Dk ∈=δ  
calculate the gain )(δgg =  and  solve the system of 
linear equation  
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with 0=Nw  and the unknown weights 

.,...,, 121 −Nwww  
 
    4. Policy Improvement 
 For each state Si ∈  find the set of decisions 
(alternatives) 
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If for each Si ∈  the set =∆ i  Ø then the policy 

),,...,( 1 Nδδδ =  is optimal and the strategy 
corresponding to it is also optimal. If at least there is 
one state Si ∈  such that ≠∆ i  Ø then the policy is 
not optimal and it must be improved. Therefore, 
substitute the policy ),,...,( 1 Nδδδ =  by the policy 

),',...,'(' 1 Nδδδ =  where ii δδ ='  if =∆ i  Ø and 

ii D∈'δ  is any other decision if ≠∆ i  Ø. Repeat 
procedures 3 and 4. 
It is proved [13], [5], that )()'( δδ gg >  and the 
optimal decision is achieved after finite number of 
iterations. 
 
3.2. Linear programing method 
 

Mine and Osaki [13] presented linear programing 
method for solving the considered problem of 
optimization. 

Let )(k
ja  be a probability that in the state Sj ∈  has 

been taken decision jDk ∈ . It is obvious that  
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The criterion function (7) can be written as 
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The equations (6) are equivalent to the system of 
equtions 
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from (16),(17) and (18) we get a following problem 
of a linear programing: 
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We define new variable in the following way 
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These substitutions allow to formulate and and prove 
following theorem [13]: 
 
Theorem. The problem: find δ * such that  
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where the criterion function )(δg  is defined by (7), 
is equivalent to the following problem of linear 
programing: Let  
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We obtain the optimal policy using the rule 
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where )(k
ja  denotes a probability that in the state 

Sj ∈  a decision jDk ∈  has been taken. 

The best decision in the state Sj ∈  is such 

alternative jDk ∈*  for which the probability *)(k
ja  is 

the greatest. The best decisions in states 1, 2,..., N 
form the optimal policy. 
 
4. Decision problem for renewable series 
system 
 

We assume that a system consists of 2 components 
which form a series reliability structure. We assume 
that a lifetime of component k is represented by a 
random variable kζ  with exponential PDF 
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k
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From the structure of the system it follows that the 
damage of the system takes place if a failure of any 
component occurs. A damaged component is 
renewed. We assume that the renewal time of k-th 
component is a non-negative random variable kγ  
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with a CDF  
 
   .2,1),()( =≤= ktPtH kk γ  
 
It is well known that the exponential probability 
distribution has memoryless property. Therefore the 
renewal of component means renewal of the whole 
system. We also assume that the random variables 
denoting successive times to failure of k-th 
component and random variables denoting their 
consecutive renewal times are independent copies of 
the random variables kζ  and kγ  accordingly. We 

suppose that the random variables 1ζ , 2ζ , 1γ , 2γ  
are mutually independent. Moreover we assume that 

1γ , 2γ  have the positive, finite expected values and 
variances.  
We determine states:  
  1 –  renewal of a first component after its failure,  
  2 –  renewal of a second component after its failure,  
  3 –  work of the "up" system.  
The "down" states are represented by a set }2,1{=A  
while the "up" state is represented by one element set 

}.3{'=A  We assume that 
 
   },2,1{1 =D },2,1{2 =D }4,3,2,1{3 =D  
 
are the sets of decisions (alternatives) for the states 
1, 2, 3. 

:1D   1 – normal reneval of a first component 
 2 – expensive reneval of a first component 

:2D   1 – normal reneval of a first component 
 2 – expensive reneval of a first component 

:3D   1 – normal reliability of a first and second  
       component 
 2 – normal reliability of a first component and  
       higher of a second component 
 3 – higherer reliability of a first component and  
       normal of a second component 
 4 – higher reliability of the both components 

 
The semi-Markov decision model is determined by 
the family of kernels 
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The matrix of transition probabilities of embedded 
Markov chain corresponding to the kernel (8) has the 
form 
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In this case the solution of the system of equations 
(9) takes the form 
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The expected values of waiting times in states Si ∈  
for decisions iDk ∈  are  
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In this case the criterion function (7) takes the form 
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We suppose that 
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We determine the numerical data. 
Parameters of CDF’s for alternatives 1Dk ∈ : 
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Table 1. The transition probabilities and the mean 
waiting times for the process 
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Decision 
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k
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1 0 0 1 5 1 
2 0 0 1 8 
1 0 0 1 4 2 
2 0 0 1 5 
1 0.47 0.53 0 58.82 
2 0.57 0.43 0 71.43 
3 0.31 0.69 0 76.92 

3 

4 0.40 0.60 0 100.0 
 

Table 2. The gain rate for the process 
 

State 
i 

Decision 
k 

)(

1

k
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k
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k
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1 0 0 -54 -270 1 
2 0 0 -62 -496 
1 0 0 -58 -232 2 
2 0 0 -64 -320 
1 21 24 0 1328.74 
2 21 28 0 1715.03 
3 25 24 0 1869.93 

3 

4 25 28 0 2680.00 
 
We have all data to start the iteration cycle of the 
Howard and Main & Osaki algorithm. Let 

)1,1,1(=δ  be the initial policy. Now the rule  has 
the form 
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Using the equality we calculate the gain 

)).1,1,1((gg =  For this gain we solve the system of 
equations(13). As the result we get the weights w1 
and w2. The solution is determined by the rules 
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Substituting the appropriate numerical values we 
obtain 
 
   g = – 5.7064,  w1 = 688.367,  w2 = 22.8242, 
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Hence 
 
   =∆1  Ø,  =∆2  Ø,  =∆3 {1, 2, 3, 4}. 
 
According to the algorithm we substitute the policy 
(1, 1, 1) by the policy (2, 1, 4) and we repeat 
procedures. Now we get  
 
   g = – 27.3125,  w1 = – 6664.25,  w2 = – 109.25, 
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From here  
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Therefore in a next step we substitute the policy 
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   ,2756.63,0945.57 )2(
2

)1(
2 −=Γ−=Γ  

 

   ,5864.22,1537.21 )2(
3

)1(
3 =Γ=Γ  

 

   .0756.26,5696.23 )4(
3

)3(
3 =Γ=Γ  

 
and   
 
   =∆1  Ø,  =∆2  Ø,  =∆3  Ø. 
 
It means that the policy δ * = (2, 2, 4) maximizes the 
criterion function 321),( DDDg ××∈δδ . 
 
5. Conclusion 
 

Semi-Markov decision processes theory provides the 
possibility to formulate and solve the optimization 
problems that can be modelled by SM processes. In 
such kind of problems we choose the process that 
brings the most profit among some decisions 
available for the operation. The problem requires the 
use of terms such as decision (alternative), policy, 
strategy, gain, criterion function. If the semi-Markov 
process describing the evolution of the real system in 
a long time satisfies the assumptions of the limit 
theorem, we can use the results of the infinite 
duration SM decision processes theory. We can 
apply the Howard algorithm for finding an optimal 
stationary policy. This algorithm is equivalent to the 
some problem of linear programing. 
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