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Abstract

In the paper there are presented basic conceptss@mé results of the theory of semi-Markov decision
processes. The optimization problem for the indinifturation SM process is connsider in the papee Th
Howard algoritm which enables to find the optimi@ti®nary strategy is also discussed here. Theidigo is
applied in a decision problem concerning the tamgonents renewable series system is. It is alearsithat
this algorithm is equivalent to the some lineargpaming problem.

1. Introduction 1) = p{FM (). 1)

Semi-Markov decision processes theory delivers
methods which give the opportunity to control anlf an initial state isi and a decision (alternative)
operation processes of the systems. In such kind okOD; is chosen at initial moment then there is

problems we choose the most rewarding procesgetermined a probabilistic mechanism of a the first

among some alternatives available for the operationchange of the state and the evolution of the system
We investigate the infinite duration SM decision ., yo interval[0, 7). The mechanism is defined
processes. The Howard algorithm modified by Main N . o
and Osaki is applied for finding an optimal statign by a transition probability (1). The decisidil D,

policy for the kind of processes. This algorithm is at some instant® determines the evolution of the

equivalent to the some problem of linear programing . ® (K .
Semi-Markov decision processes theory wasSystem on the intervellry”, 7, )More precisely,

developed by Jewell [10], Howard [7]-[9], Main and the decisiond; (n) =k D; means, that according to

Osaki [13], Gercbakh [4]. Those processes are alsghe distribution(p{ : j 0'S ),there is selected a state
discussed in [5] and [6] .
j for which the process jumps at the momerff)

2. Semi-Markov decision processes and the length of the intervat™, 7% Js chosen

Semi-Markov (SM) decision process is a SM processaccording to distribution given by the CDF®(t ).
with a finite states spacg={1,..., N} such that its A sequence of decision at the instaﬁ‘t’

trajectory depends on decisions which are mada at a q
initial instant and at the moments of the state
changes. We assume that a set of decision in each d(n) = (d,(n)....,0y (N)) (2
statei, denoting byD;, is finite. To take a decision

kOD;, means to seleckth row among the is said to be golicy for the stage. A sequence of

alternating rows of the semi-Markov kernels. polices

{QW@):t=0,k0D,,i,jOS}, d={o(n):n=012..} (3)

is called astrategy.
where We assume that the strategy has the Markov property
- it means that for every statedS a decision

33



Grabski Franciszek
Decision problem for infinite duration semi-Markov process

o,(n) 0D, does not depend on the process evolution Rigk) (t) = rij(")t, i,jO0S,kOD,
until the momentr. If & (n) =4, then it is called
a stationary decision. This means that the decision and

does not depend on. The policy consisting of

stationary decisions is called sationary policy. u® :Z(pi(jk> (rij(k)m(jk) +b{ ))

Hence a stationary policy is defined by the segeienc i0s

0=(9,,...,.0y). Strategy that is a sequence of

stationary policies is calledstationary strategy. where mﬁk) = E(Tij(k) ) denotes the expectation of the

To formulate the optimization problem we have to . . . .
. holding time of the stateif the successor state jis
introduce the reward structure for the process. We

assume that the system which occupies the stat®loreover we suppose
i when a successor statg,igarns a gain (reward) at

(k) — Ky =m& ;
arate m; =EM™)=m",i,j0S, k0D,
i~ (X),1,]0S, kUD, and
at a momentx of the entering statefor a decision qgk) =0,i,j0S,kOD;.

kOD,. The functionr{(x )is called the “yield

rate” of statei at an instank when the successor Now the equality (5) takes the form
state isj andk is a chosen decision [9]. A negative
reward at a rate,’(x Jenotes a loss or a cost of u® =m )" p{Ir® =m®r®. (6)

that one. A value of a function ios

t 3. Optimization problem for infinite duration
RY () = j (X dx,i,jO0S, kOD;, (4)  process
° We formulate the optimization problem of a semi-
denotes the reward that the system earns by spgendirMarkov proce§s on' infinite interva[0, e . )This
a timet in a staté before making a transition to state Problem was investigated by Howard [9] and by
j, for the decisiork 1D, . When the transition from Miné and Osaki [13]. It is known as decision

the state to the statg for the decisiork is actually problem without discounting.
made, the system earns a bonus as a fixed sum. T ,
bonus is denotes by rfl‘ Hovard algorithm

We assume that considered semi-Markov decision

qﬁk) (x),i,jOS, kOD, process with a finite state spa®e {1,..., N} satisfy
assumption of the limiting theorem from [6], [11],
A number [12].
The criterion function
u® =Y [[RO© b ) da ) 2 m@uf > m@mTnt
j0s o 9(5) — _i0S — i0S (7)
PRACOLSEEWAC) L
is an expected value of the gain that is generayed i0s oS

the process in the statie at one interval of its
realization for the decisioR O D; .
In this paper we suppose that

means the gain per unit of time as a result ofng lo
operating system. The numberg (o )OS,
represent the stationary distribution of the emleeldd
Markov chain of the semi-Markov process defined

) (y) = (K oo _
ri () =r;", kOD;,i,j0S={1...6}. by the kernel

From (5) we obtain QY (1) = [Qigk) (t):t=0,i,jO0S kOD,] (8)
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It means that for every decisiokkOD, those pid, m*, u®
probabilities satisfy the following linear systemh o
equations for each decisiok 1D, , i,jOS.
(k) = i
> m(3)pf? =m;(9), | 0S, 3. Policy Evaluation

i0s

For the present policyd =(J,,...,0y )0, =kOD,
calculate the gain g = g(Jd) and solve the system of

2. 7(9)=1 m(8)>0,j0S, © .
e inear equation
where gm® +w =u® +>" piPw;,i0s, (13)
jos
pd :![n]oQigk) (t),i,jOS. (10) with wy, =0 and the unknown weights
Wy, Wy, Wiy -
The number

4.Policy Improvement
For each stateidS find the set of decisions

m® = ET®) =lim It dGM(t),i0S kOD; (11) (alternatives)
00 0

u+> oW -w
A ={kOD, :T0 =— = >g()r (14)

P

is an expected value of a waiting time in a stater
an decision (alternativej (1D .

A stationary policyd is said to be optimal if it
maximize the gain per unit of time:

If for each iOS the setA, = @ then the policy

9() :méan{g(d)]. (12) 0=(9,,....0y), Iis optimal and the strategy
corresponding to it is also optimal. If at leastrthis

In [13] it is proved that the optimal stationary one statei JS such thatA, # @ then the policy is

strategy there exists. In [9] and [13] there isnot optimal and it must be improved. Therefore,
presented Howard Algorithm which enables to find ¢ pstitute the policyd = (4,.....3, )by the policy

the optimal stationary strategy. Here we preseat th 5=(3,,..5,), where & =3 if A= and

Howard Algorithm using our own notation.
o,0D; is any other decision ifA; # @. Repeat

The Algorithm procedures 3 and 4.
1.Data It is proved [13], [5], thatg(d')>g(d )and the
- Sets of decisions (alternatives) optimal decision is achieved after finite number of
iterations.

D,i0S={12,..., N},
3.2. Linear programing method
- Set of functions definig the semi-Markov

decision processes Mine and Osaki [13] presented linear programing

method for solving the considered problem of

{QY():t=0,i,j0S kOD}, optimization. o ,
’ Let a{ be a probability that in the statedS has
- Sets of functions that define the uninga been taken decisiokJD; . It is obvious that
{r®(x):x20,d, 0D,,i,jOS}, Dak=10<alV<1 jOS (15)

KOD,

() - g i
{bj” -d; LDy, 1, j LS} The criterion function (7) can be written as

2. Initial calculation procedure
Compute according to (7), (8) and (9)
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2. 2 & m@u” g(d") =ma{g(9))]
9(5) - i0S kOD; (16)
%%a}k)m(d)m‘k) where the criterion function g(J) is defined by (7),

is equivalent to the following problem of linear

The equations (6) are equivalent to the system oP'0draming: Let

equtions
y{9 =0, jOS,kOD
> > alm(d)p =, (3), |
i0S kOD, Find
7(0)=1 =m(0)>0, jOS kOD, 17
% i J i rn(k) z zui(k) yEk)
Y17 | joS kap;
Substituting
under constraints
a¥m ) =x¥ =0, jOS, kOD,, (18) k - '
2= Y Py =0 j=1..N-1
and taking into account that kD, i0S kD
. (k) \,(k) —
m(8)=3x¥, j0s, (19 2> m“y=1
KOD; j0S kD,

from (16),(17) and (18) we get a following problem We obtain the optimal policy using the rule

of a linear programing:
(k)

(K) 3 (K) a) =2
IR Ty
i0S kOD; kOD;
Pl &

X
i0S kOD;

where a® denotes a probability that in the state
jUS adecisionk I D; has been taken.
The best decision in the statg 1S is such

under constrains

D xP =3 piox =0, jOS, alternativek* 0 D; for which the probabilitya®” is
<0 (k;DS kP “ _ the greatest. The best decisions in states 1,NP,...
> > x9=1x=20,jOskOD,. (21)  form the optimal policy.
jOS kOD;

_ _ _ _ 4. Decision problem for renewable series

We define new variable in the following way system
x () We assume that a system consists of 2 components

YW s e~ (22) which form a series reliability structure. We assum

ZZ”} X] that a lifetime of componerk is represented by a

s "DlD‘ random variable/, with exponential PDF
YT 0 (23)

2 2 M fi (8) =21 g ., ().

i0S kOD,

These substitutions allow to formulate and and grov FomM the structure of the system it follows that th
following theorem [13]: damage of the system takes place if a failure gf an

component occurs. A damaged component is
renewed. We assume that the renewal timé-tbf

Theorem. The problem: findd" such that ) ) )
component is a non-negative random variaple
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with a CDF A9 = ) + )0 kOD,, k,=1,2 k, =1,2.
He(t) =P/ st), k=12 Assume that

It is well known that the exponential probability
distribution has memoryless property. Therefore the
renewal of component means renewal of the whole
system. We also assume that the random variables Hék)(t):]_—(1+ ag")t)e“’ék)“), t>0, kOD,,
denoting successive times to failure d&th
component and random variables denoting their
consecutive renewal times are independent copies o
the random variableg’, and )y, accordingly. We
suppose that the random variablgs, {,, y;, V. F, (t) :1—e’”(2k2)t, t=0 k, =12
are mutually independent. Moreover we assume that

i, ¥, have the positive, finite expected values andwhere

variances.
We determine states: D;={1234}={( 11,4 2.(21, (2 2)}.

1 - renewal of a first component after its failure,
2 — renewal of a second component after its failure, is the set of alternative for the state 3.
3 — work of the "up" system.
The "down" states are represented by afset {1 2}For k =10 D, AN =29 200 =)0
while the "up" state is represented by one elersent for k = 20D, /‘gk) :/‘{1), /‘(zk) :/‘(22),

A'={3}. We assume that
for k=30D; AN =@ 0 = O

HPO M) =1- L+ a®t)e 0, 120, kOD,,

fFM)=1-e4" t20, k=12

D, ={12}, D, ={12}, D,={1,234} for k=40D, AN =)@ ), =)0,
are the sets of decisions (alternatives) for tiagest The matrix of transition probabilities of embedded
1,23 Markov chain corresponding to the kernel (8) has th
form

D,: 1-normal reneval of a first component
2 — expensive reneval of a first component

0 0 1

D,: 1 -normal reneval of a first component PO = o 0o 1
2 — expensive reneval of a first component A )
AR AK)

D,: 1 -normal reliability of a first and second
component
2 — normal reliability of a first component and
higher of a second component
3 — higherer reliability of a first component and

In this case the solution of the system of equation
(9) takes the form

(k) (k)
normal of a second component _A" _ " _1
m(0) =——, m,(0)=—*—, m(d)==.
4 — higher reliability of the both components 1(9) 2AK) 2(9) 2A\K) 3(9) 2
The semi-Markov decision model is determined byThe expected values of waiting times in statesS
the family of kernels for decisionsk O D, are
K W —_2 _
0 0 H® (1) M =g for k0D, ={1.2}
Q= o 0 H{O 1
AR oy AR A 2
W(l_e ) W(l_e ) O mg‘)=W for kOD, ={1, 2},
2
where
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1
AW

m{® = for kOD, = {1,2,3 4}.

In this case the criterion function (7) takes thenf

()ng)ul‘k) + AU + Ao )a{k)agk)
k k k k k k
2A0af9 +240a® +aaf

g(9) =

We suppose that
i) =r®, kOD,, i,j0S=1{123}

and

U =m0 pre =m®r®, ios,

jas

We determine the numerical data.
Parameters of CDF’s for alternativk§1D, :

al =0.125.

=02 al?
Parameters of CDF’s for alternativk§1D, :

al® =025 a? =02

Parameters of CDF’s for alternativk§] D, :

AP =0008 A5 =0.009 AY =0017,

AP =0.008 AP =0.006 A? =0014,
A® =0004 AP =0.009 A® =0.013,

A9 =0.010.

=0.004 A% =0.006 A¥
Table 1. The transition probabilities and the mean
waiting times for the process

Statg Decision

oo e T [ o [ ot
1 1 0 0 1 5
2 0 0 1 8
2 1 0 0 1 4
2 0 0 1 5
1 0.47]0.53] 0 |58.82
3 2 0.5710.43] 0 | 71.43
3 0.3110.69] 0 | 76.92
4 0.40]0.60] O | 100.0
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Table 2. The gain rate for the process

Stiate Declision ril(k) rigk) ri3(k) Ui(k)

1 1 0 0 | -54| -270
2 0 0 | -62| -496

> 1 0 0 | -58] -232
2 0 0 | -64| -320
1 21| 24| 0| 1328.74

3 2 21| 28| 0] 1715.08
3 25| 24| 0] 1869.93
4 25| 28| 0] 2680.00

We have all data to start the iteration cycle a th
Howard and Main & Osaki algorithm. Let
0= (11 be the initial policy. Now the rule has

the form

(/‘{l)ul(l) £ AOUD + AOYD )al"‘)aél)
000 + 21050 1 40,0
27a5” + 24307 +a”a;

9((111)=

Using the equality we calculate the gain
g=9((111)). For this gain we solve the system of

equations(13). As the result we get the weighis
andw,. The solution is determined by the rules

_ g(pspm? +mi) - piPm)

VVL -
pg]) ng) + F%(].) pz( )p§2) + %(1)

\/\/2_

Substituting the appropriate numerical values we
obtain

g =—5.7064,w; = 688.367,w, = 22.8242,
r® =-191673 r? =-148046,

r® =-63706 IN? =-685648

Y =28296 I =296404

rd =27289 r{ =296904
Hence

A=0, A =@, A ={1,2,3,4}

According to the algorithm we substitute the policy
(1,1,1) by the policy (2,1,4) and we repeat
procedures. Now we get

g=-27.3125w; = - 6664.25w, = — 109.25,
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r® =127885 @ =7710312

[1]

¥ =-306875 r? =-4215,

r®=-31645 r® =-208274 [2]

r®=-352795 r{¥ =-05125.

[3]

From here

A ={1,2}, A, =0, A= D [4]

Therefore in a next step we substitute the polic{IS]
(2, 1, 4) by the policy (2, 2, 4). In this case have

9= 27.7474,w, = — 175.661w, = — 3.62188, [6]

r® =-188678 ® =-400424 (7]

M) =-57.0945 ? =-632756,

[8]

¥ =211537 r? =225864

[9]

¥ =235696 ¥ =26.0756.

and

[10]

[11]

It means that the policy = (2, 2, 4) maximizes the

criterion functiong(d), 0D, xD, xD,.

5. Conclusion

[12]

[13]
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brings the most profit among some decisions
available for the operation. The problem requites t
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