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Abstract  
 

The paper deals with non-renewal multistate monotone systems consisting of multistate components which are 
modeled by the semi-Markov processes. In the case of a non-renewal system the multistate reliability functions 
of the system components and the whole system are discussed.  All presented concepts and models are 
illustrated by simple numerical examples. 
 
1. Introduction  
 

We can find many papers which are devoted to the 
reliability of multistate monotone systems [1]-[15]. 
The  basic  concepts deal with   MMS are presented  
in [1], [4], [5], [6], [13]. Some results of 
investigation of the multistate monotone system  
(MMS) with components modelled by the 
independent semi-Markov processes are presented in 
this paper. We assume that the states of the system 
components are modelled by the independent semi-
Markov processes. Some characteristics of a semi-
Markov process are used as reliability characteristics 
of the system components. The binary representation 
of the multistate monotone systems  allows to use 
traditional reliability metothod for analysis of MMS . 
The concept of a minimal path vector to level l is 
crucial to these considerations. The multistate 
reliability functions of the system components and 
the whole system are discussed in the paper. The 
presented concepts and models are illustrated by 
some numerical examples.  
 
2. Structure of the system  

Consider a system consisting of n components with 
the index set }.,...,1{ nC = . We suppose that 

CkzS kk ∈= },,...,1,0{  is the set of the states of the 

component k and }.,...,1,0{ sS=  is the set of the 
system states. All the states are ordered. States of the 
system (a component k) denote successive levels of 
the object technical condition from the perfect 
functioning level z )( kz  to the complete failure level 
0. Therefore the state  0 is the worst and the state z 

)( kz  is the best. 
The function  
 
   SxSxS n →...: 1ψ  
 
is called the system structure function. 
If the system structure function is non-decreasing in 
each argument and  
 
   ,0)0,...,0( =ψ .),...,( 1 zzz n =ψ  
 
then it is said to be  monotone. Formally a multistate 
system is represented by a sequence of symbols 

).,...,,,( 1 ψnSSSC  If the system structure function is 
monotone the system is called  multistate monotone 
system (MMS). We assume that the considered in 
this chapter systems are MMS. The state of a 
component k at fixed instant t may be described by 
the random variable )(tX k  taking its value in kS . 
The random vector  
 
   ))(),...,(()( 1 tXtXtX n=   
 
represents the states of all system components at 
fixed moment t. The state of the system at the fixed 
instant t is completely defined by the states of 
components through the system structure function ψ   
 
   )).(()( tXtY ψ=                                                    (1) 

 
If the parameter t runs the interval ),,0[ ∞ all 
mentioned above random variables become random 
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processes. Therefore )},0[:)({ ∞∈ttY  is a stochastic 
process with the state space }.,...,1,0{ zS=  The 
process determines a reliability state of the system.  
 
3. Reliability of  non-renewal  MMS 

We suppose that the reliability states of system 
components are described by the independent semi-
Markov processes .},0:)({ CkttX k ∈≥   
Unfortunately the random process },0:)({ ≥ttY  

))(),...,(()( 1 tXtXtY nψ= taking its values from the 

set },...,1,0{ zS=  which describes the system 
reliability state at time )},0[ ∞∈t is not a semi-
Markov process. We have at least two ways to 
analyse the reliability of the multistate system. The 
first one is based on the extension of the process 

},0:)({ ≥ttY to a semi-Markov process by 
construction the superposition of independent 
Markov renewal processes associated with the semi-
Markov processes .},0:)({ CkttX k ∈≥  [11], [12]. 
This way needs more advanced mathematical 
concepts which go beyond the scope of this paper. 
The second way consists in calculating the reliability 
characteristics of the multistate system based on the 
characteristics of its independent components. In this 
paper we apply the second way. 
We suppose that the semi-Markov process 
representing the reliability state of the component k 
is determined by by a following kernel  
 
   )()( tQ k  
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Let  
 
   })(:inf{ )(

][
)(

][
k
lk

k
l AtXtT ∈=                                    (3) 

 
where     
 
   }1,...,0{)(

][ −= lA k
l                                                  (4) 

 
and       
                                                  
   }.,...,{' )(

][
)(

][ k
k
l

k
l zlASA =−=  

 

The function  
 
   ,)0(\()( )(

][
)(
][ iXtTPt k

l
k
li =≤=Φ )(

]['
k
lAi ∈                (5) 

 
represents the cumulative distribution function 
(CDF) of the first passage time from the state 

)(
]['

k
lAi ∈  to the subset )(

][
k
lA  for the process 

}.0:)({ ≥ttX k If ksX =)0(  then the random variable 
)(

][
k

lT represents the l-level lifetime of the component 

k. A corresponding reliability function is  
 
    ).(1 )(

][
)(

][ tR k
lzk

k
lzk Φ−=                                              (6) 

                                             
 The Laplace-Stieltjes transforms of the CDF’s 

)(
][

)(
][ '),( k

l
k
li Ait ∈Φ  satisfy the integral system of 

equations [5], [6].  
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The Laplace transform  
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of the k-th component reliability function to level l is 
given by the formula  
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)(~1

)(
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][)(
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s
sR
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lsk

ϕ−
=                                        (11) 

 
On the other hand  
 
   ))0(\()( ][

)(
][ klk

k
lzk zXtTPtR =>=                  

 
               ],0[( tuP ∈∀=                                        (12) 

   .)0(\')( ][ klkk zXAuX =∈  

 
As components of the system are unrepairable then 
we have  
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   ],0[()()(
][ tuPtR k

lzk ∈∀=  

 
   ))0(\')( )(

][ k
k
lk zXAuX =∈  

      
    ).)0(\')(( )(

][ k
k
lk zXAtXP =∈=                           (13) 

 
Finally we get  
 
   ∑ == =
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j k

k
lzk zXjtXPtR 1
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][ ))0(\)(()(  

   ∑= =
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j
k

zkj tP1
)( ).(                                                      (14) 

 
Applying the equations (14.02) from [ 5] we obtain a 
linear system of equations for the Laplace transforms 
of the reliability functions to level l for the system 
components:    
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are the Laplace transforms of the functions )()( tG k

i  

and )()(
][ tR k

li .0≥t  Passing to the matrix notation we 

get  
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The function  
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means the reliability function to level l of a k-th 
system component. 
The vector function  
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 is said to be the multistate reliability function of the 
k-th component of the system.  Let us notice that  
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From the well known property of probability we 
have  

   ))((1 kk StXP ∈= )')(( )(
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k
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It means that  
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The equation (6) enables to calculate the Laplace 
transform of the multistates reliability function of the 
k-th component.  
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Its inverse Laplace transform is equal to the vector of 
functions. 
 
4. Binary representation of MMS 

A vector nn SSyyyy ××∈= ...),...,,( 121  is called a  
path vector to level (of level) l of the multi-state 
monotone system if .)( ly ≥ψ  
The path vector y is said to be a  minimal path vector 
to level l if in addition the inequality yx < implies 

.)( ly <ψ The inequality yx < means that ii yx ≤  for 

ni ,...,2,1=  and ii yx <  for some i. We denote the set 

of all minimal path vectors to level l by lU , 

)(,...,1 kzzl = and }0{0 =U , where )0,...,0,0(}0{ = . 
In reliability analysis of the multistate monotone 
systems we may use their binary representation. This 
approach was presented among other in papers of 
Block and Savits [3] and Korczak [13]. We define 
the binary random variables 

kkr SrCkttX ∈∈≥ ,},0:)({ :  
 

   




<
≥

=
.)(0

)(1
)(

rtXfor

rtXfor
tX

k

k

kr                                    (21) 

 
We determine the system level indicators  

:},...,1{, zjj ∈ψ  
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We will use symbols  introduced by Barlow and 
Proshan [2] which denote the binary operations:  
 
   }1,0{),1(1 11 ∈∏ −−= ==

n
i kk

n
i k xxxC  

 
   ),1)(1(1 2121 xxxx −−−=C }.1,0{, 21 ∈xx  
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From (21), (22) and definition of the minimal path 
vectors we obtain a following binary representation 
of the stochastic process describing evolution of the 
multistate monotone system  
 
   ∏ ∏= ∈ >∈lUy kyCkl tX 0,))((ψ  

 
   ∏ ∏−−= ∈ >∈lUy kyCk kkykky tXtX 0, )).(1(1)(           (23) 

 
Consider a three components multistate system 

),,,,,( 321 ψSSSSC where },3,2,1{=C },2,1,0{=S  

},2,1,0{1 =S },2,1,0{2 =S }1,0{3 =S and the system 
structure function is determined by the formulae:  
 
   0)( =xψ  for ,),,( 0321 Dxxxx ∈=  

   1)( =xψ  for ,),,( 1321 Dxxxx ∈=  

   2)( =xψ  for ,),,( 2321 Dxxxx ∈=  
 
where  
 

   
)},1,2,0(),0,2,1(),0,2,0(),0,2,2(),0,0,2(

),0,1,1(),0,0,1(),0,1,0(),1,0,0(),0,0,0{(0 =D
 

   )},1,2,0(),1,0,2(),1,1,1(),1,1,0(),1,0,1{(1 =D  

   )}.1,2,2(),1,2,1(),1,1,2{(2 =D  
 
First we have to determine the set lU  of all minimal 

hth vectors to the level l for .2,1=l  We take under 
consideration the set 1D . The vector )1,0,1(=y  is a 
minimal path vectors to level 1, because according to 
definition 11)( ≥=yψ and there exists a vector 

)1,0,0(=x such that yx < and .10)( <=xψ  The 

vector )1,2,0(=y  is not a minimal path vectors to 
level 1, because 11)( =yψ and for )1,1,0(=x we have 

yx <  and 1)( =xψ . Also the vector )1,0,2(=y  is 
not a minimal path vectors to level 1, because 

11)( ≥=yψ  and for )1,0,1(=x  is yx <  and 
1)( =xψ . 

Analysing all vectors from 1D  we get a set of the 

minimal path vectors of the level 1=l  which is 
denoted as lU :  
 
   )}.1,1,0(),1,0,1{(1 =U  
 
In the similar manner we get 2U :  
 
   )}.1,2,1(),1,1,2{(2 =U  
 
 From (23) we have  
 

   ∏ ∏= ∈ >∈lUy kyCk kkyl xx 0,)(ψ                                 (24) 

   ).1(1 0,∏ ∏−−= ∈ >∈lUy kyCk kkyx  

                      
Applying this equality we have  
 
   3111312131111 )( xxxxxxx == Cψ  

   .31211131213111 xxxxxxx −+                                   (25) 
 
In a similar way, using an equality  
 
   },max{ prkkpkr xxx =                                                 (26) 

we get      
  
   .)( 3122123122113121122 xxxxxxxxxx −+=ψ                                                       
 
5. Reliability of unrepairable system  

We suppose that the semi-Markov processes 
}0:)({},...,0:)(1 ≥≥ ttXttX n are independent. A 

stochastic process },0:)({ ≥ttY  
 
   ))(),...,(())(()( 1 tXtXtXtY nψψ ==                  (27) 
 
 taking its values in a state space },...,1,0{ zS=  

describes a reliability state for ).,0[ ∞∈t It is not a 

semi-Markov process. Let },...,1,{' ][ zllA l += and 

}1,...,1,0{' ][][ −=−= lASA ll . A random variable  

 
   })((:inf{ ][][ ll AtStT ∈=                                      (28) 

 
denotes the time to failure to level (of level) l of the 
system. A reliability function to level l of the system 
is determined by the rule  
 
   ).()( ][][ tTPtR ll >=                                             (29) 

 
 We have at least two ways of calculating it. The first 
one consists in applying distributions of the 
processes which describe the reliability evolution of 
the system components. The l level reliability 
function of the system may be computed according 
to the rule  
 
   ),()(
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The second way leads through the computation of the 
components of reliability functions to level l. 
Applying (24) we have  
 
   ))](({[)(][ tXEtR ll ψ=  

   ∏ ∏−−= ∈ >∈lUy kyCk kky tXE0, ))].([1(1                  (31) 

 
The vector function  
 
   )](),...,(,1[)( ][]1[ tRtRtR z=                                  (32) 

 
is called the multistate reliability function of the 
system.  The vector  
 
   ],,...,,1[ ][]1[ zmmm=                                             (33) 

 

   ∫ == ∞
0 ][][ ,,...,1),( zltRm ll                                    (34) 

 
is said to be the multistate mean time to failure of the 
system.  
 
6. Numerical illustrative example  

To explain and illustrate presented above concepts 
we will construct a simple reliability model of the 
multistate system with the semi-Markov components. 
We assume that the multistate reliability system 
consists of three components reliability evolution of 
which are modelled by independent semi-Markov 
processes },0:)({ 1 ≥ttX  },0:)({ 2 ≥ttX  

},0:)({ 3 ≥ttX the state spaces },2,1,0{21 == SS  

}.1,0{3 =S  We assume that the kernels of the 
processes 1 and 2 are the same:  
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 where  
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Suppose that the initial distributions are  
 
   ,1)2)0(( )( ==kXP .2,1=k  
 
Assume that a kernel of the last process is of the 

form   
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 where  .0,0,0 >>≥ λκt  
Now we illustrate the second way of calculation of 
the system multistate reliability function.  
The second method of computing the system 
mulistate reliability function needs to calculate the 
reliability functions of its components to level l.. 
Applying (25) we have         
 
   ))](([)( 1]1[ tXEtR ψ= )]()([ 3111 tXtXE=  

   )]()([ 3121 tXtXE+ )].()()([ 312211 tXtXtXE−      (37) 
 
Hence, using the independence of the processes 
discussed here we get the reliability function of the 
system to level 1:     
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In the same way, according to (26) we have   
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The reliability functions of the component to level 

2,1=l  we evaluate applaying  (17). 
In this case },2,1,0{=kS 2,1=k . Hence  
 
   }0{]1[ =A , }2,1{' ]1[ =A , 

   }1,0{]2[ =A }.2{]2[ =A  

 
For 1=l  the matrices from equations (17) take the 
form 
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 The element )(
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]1[2 sR k of the solution of (15) is  
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For 2=l  the matrices from equations (17) take the 
form  
 
   ],1[)()(

]2['
=− sqI k

A  

   )].(~)(~1[
1

)( )(
21

)(
20

)(

]['
sqsq

s
sG kkk

lA −−=  

 
 The solution of (15) is  
 

   
s

sqsq
sR

kk
k )(~)(~1

)(
~ )(

21
)(

20)(
]2[[2

−−
= ,                         (43) 

The Laplace-Stielties transforms of elements from 
(42) and  (43) are  
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for .2,1=k  For parameters  
 
   ,2.0,01.0,02.0,1.0 ==== aγβα  
   .1.0,01.0,8.0 === κηb  
 
The rules (41) and (42) are  
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We get the reliability functions of the system 
components as the inverse Laplace transforms of 
these functions. Thus we obtain  
 
   tttk eeetR 04.002.004.0)(

]1[ 04.02.32.4)( −−− −=  

              te t02.0064.0 −+  
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 For 3=k  we have  
 
   tettQtR λλ −+=−= )1()(1)( )3(

10
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Using equalities (37) and (38) we obtain elements of 
the multistate reliability function of the system:  

   tt etetR 04.001.0
]1[ 2.4)(01.01(2)( −− +=       

              )064.004.02.3 02.004.002.0 ttt tetee −−− ++−  

              ttt eete 02.004.001.0 2.32.4)(01.01( −−− −+−  

               ,)064.004.0 202.004.0 tt tete ++ −  
 
   209.0

]2[ )25)(01.01(0016.0)( ttetR t ++−= − + 

             tt ette 04.005.0 2.4)(25)(01.01(08.0 −− +++  

             ).064.004.02.3 02.004.002.0 ttt tetee −−− ++−  
 
The multistate reliability function can be written as a 
vector function  
 
   )].(),(,1[)( ]2[]1[ tRtRtR =  

 
Conclusions 

In many real-life situations the binary models seem 
to be not sufficient for describing reliability of the 
system, because in addition to "down" state (0) and 
"up" state (1) the system may be capable on different 
levels from perfect functioning to complete failure. 
Then the multistate models are more adequate. The 
decomposition method of the multitate unrepairable 
system to binary systems allows to apply well known 
methods of classical reliability theory in multinary 
cases. Semi-Markov processes are very useful as 
reliability models of the multistate system 
components. The semi-Markov process theory 
provides some concepts and theorems which enable 
to construct the appropriate probability models of the 
multistate reliability system. Unfortunately all these 
models are constructed under the assumption of 
independence of processes describing the reliability 
of the system components. 
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