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Abstract 
 

In the paper an approach to the reliability analysis of multi-state systems with dependent components operating 
at variable operation conditions is presented. The multi-state reliability function of complex system is defined 
and determined for the shipyard rope ship elevator. In developed models, it is assumed that system components 
have the multi-state exponential reliability functions with interdependent departures rates from the subsets of 
reliability states. 
 
1. Introduction 
 

Currently, newest trends in the reliability analysis of 
technical systems are directed to complex systems. 
These are complex systems that significant features 
are inside-system dependencies and outside-system 
dependencies, that in case of damage have 
significantly destructive influence on the safety of 
the environment where they are operating. These 
systems are made of large number of interacting 
components and even small perturbations can trigger 
large scale consequences. For above reason, as an 
extended failure within one of the complex system 
may result in the critical incapacity or destruction 
and can significantly damage many aspects of human 
life, development of suitable tools for their reliability 
analysis is of great value.  
Many technical systems belong to the class of 
complex systems as a result of large number of 
interacting components and subsystems they are built 
of and their complicated operating processes having 
significant influence on their reliability. This 
complexity and inside-system and outside-system 
dependencies and hazards cause that there is a need 
to develop new comprehensive approaches and 
general methods of analysis, identification, 
prediction, improvement and optimization this kind 
of complex system reliability. We meet complex 

systems, for instance, in piping transportation of 
water, gas, oil and various chemical substances and 
in port, shipyards and maritime transportation 
systems. Reliability analysis of complex systems’ 
characteristics, considering systems at variable 
operation conditions and their changing in time 
reliability structures [8], [12] as well as their among 
components and subsystems dependability, becomes 
complicated. Adding to this analysis, the outside of 
complex systems hazards coming from other 
systems, from  natural cataclysm and from other 
dangerous events makes the problem essentially 
difficult to become solved in order to improve and to 
ensure high level of these systems reliability.  
In most reliability analyses, it is assumed that 
components of a system are independent. For 
instance, references [8] and [12] describe complex 
systems with aging components operating at variable 
operation conditions assuming their components 
independence. However, in reality, especially in case 
of complex systems, this assumption is not true, so 
that dependencies among complex systems’ 
components and subsystems should be assumed and 
considered. It is a natural assumption, as after 
decreasing the reliability state by one of components 
in a subsystem, the inside interactions among the 
remaining components may cause further 
components reliability states decrease [1]-[2], [10]-
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[11]. In [10]-[11] the authors analyze failure 
properties of a bundle of fibers assuming equal load 
sharing (ELS) model, considered in this paper, and 
local load sharing (LLS) model. The threshold 
strength of each fiber is determined by the stress 
value and in ELS model after fiber failure the 
strength thresholds of fibers are uniformly 
distributed. In this paper we describe similar model 
of equal load sharing, however we present multi-state 
approach to reliability analysis of complex systems 
with dependent components. This way we link the 
inside system dependencies between its components 
with influence on the complex systems’ reliability 
coming from their external dependencies. In contrast 
to this paper the authors in [10]-[11] describe the 
breaking dynamics by a recursion relation in discrete 
time steps. Comparing with results presented in [1]-
[2] this paper extends problem of reliability analysis 
of systems with dependent components adding a 
component stress proportionality correction 
coefficient and taking into account variable operation 
conditions of systems. 
To tie results of investigations of complex systems 
inside-dependences together with results coming 
from the assumed their outside-dependencies, the 
semi-Markov model [5], [6], [9], [13]-[16] can be 
used to describe those systems operation processes. 
This linking of the inside and outside of complex 
system dependencies under the assumed their 
structures multi-state models, is the main idea of 
those systems reliability analysis methodology.  
 
2. Reliability of multi-state systems 
 

In the multi-state reliability analysis to define a 
system with degrading components, we assume that: 
– n is the number of system components,  
– Ei, i = 1,2,...,n, are components of a system, 
– all components and a system under 

consideration have the reliability state set 
{0,1,...,z}, ,1≥z  

– the reliability states are ordered, the reliability 
state 0 is the worst and the reliability state z is 
the best,  

– Ti(u),  i = 1,2,...,n,  are independent random 
variables representing lifetimes of components 
Ei in the reliability state subset {u,u+1,...,z}, 
while they were in the reliability state z at the  
moment t = 0,   

– T(u) is a random variable representing lifetime 
of a system in the reliability state subset  
{ u,u+1,...,z} while it was in the reliability state z 
at the moment t = 0, 

– the system states degrades with time t, 

– Ei(t) is a component Ei reliability state at the 
moment t, ),,0 ∞∈<t  given that it was in the 
reliability state z  at the moment t = 0,   

– S(t) is a system S reliability state at the moment 
t, ),,0 ∞∈<t  given that it was in the reliability 
state z at the moment t = 0.  

The above assumptions mean that reliability states of 
the system with degrading components may be 
changed in time only from better to worse [7], [8], 
[15]-[16].  
Definition 1. A vector   
 
   Ri(t ⋅, ) = [Ri(t,0),Ri(t,1),...,Ri(t,z)],                        (1) 
 
where   
 
   Ri(t,u) = P(Ei(t) ≥ u | Ei(0) = z) = P(Ti(u) > t),     (2) 
   ),,0 ∞∈<t u = 0,1,...,z, i = 1,2,...,n,               
 
is the probability that the component Ei is in the 
reliability state subset },...,1,{ zuu +  at the moment t, 

),,0 ∞∈<t  while it was in the reliability state z at the 
moment t = 0, is called the multi-state reliability 
function of a component Ei.  
Definition 2. A vector     
 
   R(t ⋅, ) = [R(t,0),R(t,1),...,R(t,z)], ),,0 ∞∈<t         (3) 
 
where   
 
   R(t,u) = P(S(t) ≥ u | S(0) = z) = P(T(u) > t),         (4) 
 
for ),,0 ∞∈<t  u = 0,1,...,z, is the probability that a 
system is in the reliability state subset },...,1,{ zuu +  
at the moment t, ),,0 ∞∈<t  while it was in the 

reliability state z at the moment ,0=t  is called the 
multi-state reliability function of this system.  
Under those assumptions  
 

   )(uµ = ∫
∞

0

,),( dtutR  u = 1,2,...,z,                          (5) 

 
is the mean lifetime of a system in the state subset 

},,...,1,{ zuu +    
 

   2)]([)()( uunu µσ −= , u = 1,2,...,z,                  (6) 

 
where   
 

   ∫=
∞

0

2)( tun R(t,u)dt, u = 1,2,...,z,                          (7) 
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is the standard deviation of the system lifetime in the 
reliability state subset },...,1,{ zuu +  and moreover    
 

   ∫=
∞

0

,),()( dtutpuµ  u = 1,2,...,z,                            (8) 

 
is the mean lifetime of a system in the state u while 
the integrals (5), (7) and (8) are convergent.  
Additionally, according to (5) and (8), we get the 
following relationship  
 
   ),1()()( +−= uuu µµµ  ,1,...,1,0 −= zu   
   ).()( zz µµ =                                                         (9) 

 
Definition 3. A probability  
 
   r(t) = P(s(t) < r | S(0) = z) = P(T(r) ≤ t), ),,0 ∞∈<t  
 
that a system is in subset of reliability states worse 
than the critical reliability state r, r ∈{1,...,z} while it 
was in the reliability state z at the moment t = 0 is 
called a risk function of the multi-state system [7].   
Under this definition, from (4), we have     
 
   r(t) = −1  P(S(t) ≥ r | S(0) = z) = −1  R(t,r),        (10)   
 
for ),,0 ∞∈<t  and if τ is the moment when a system 

risk exceeds a permitted level δ, then   
 
   =τ r ),(1 δ−                                                           (11) 
 
where r )(1 t− , if it exists, is the inverse function of the 
system risk function r(t). 
 
3. Reliability of multi-state “m out of n” 
system with dependent components 

One of basic multi-state reliability structures with 
components aging in time are “m out of n” systems. 
Definition 4. [7] A multi-state system is called “m 
out of n” system if its lifetime T(u) in the reliability 
state subset },...,1,{ zuu +  is given by    
 
   ),()( )1( uTuT

mn +−=  m = 1,2,...,n, ,,,1 zu K=  

 
where )()1( uT mn +−  is the n-m+1-th order statistic in 

the sequence of the component lifetimes )(1 uT , 

)(2 uT , . . ., ).(uTn  
The above definition means that the multi-state “m 
out of n” system is in the reliability state subset 

},...,1,{ zuu +  if and only if at least m out of its n 
components are in this reliability state subset. 

The multi-state “m out of n” system is called a multi-
state parallel system if m = 1,  and it is called a multi-
state series system if m = n.  
Consequently, the multi-state parallel system is in the 
reliability state subset },...,1,{ zuu +  if and only if at 
least 1 of its n components are in this reliability state 
subset and the multi-state series system is in the 
reliability state subset },...,1,{ zuu +  if and only if all 
of its n components are in this reliability state subset. 
Definition 5. [7] A multi-state “m out of n” system is 
called homogeneous if its component lifetimes Ti(u) 
in the reliability state subset have an identical 
distribution function i.e. if its components Ei have 
the same reliability function  
 
   )],(,),1,(,1[),( ztRtRtR

iii
K=⋅                            (12)    

 
with the coordinates 
 
   ),(),( utRutR

i
=                                                 (13) 

   for ),,0 ∞∈<t  ,,,1 zu K=  i = 1,2,...,n. 
 
Similarly as in [8], various reliability structures of 
the critical infrastructures with dependent 
components may be defined and their reliability 
functions determined. As a particular case, the 
reliability functions of considered complex systems 
composed of dependent components having 
exponential reliability functions may be determined. 
To do this, the following mathematical model of the 
inside infrastructure dependences between its 
components can be applied.  
One of suggested approaches to reliability analysis of 
a homogeneous infrastructure with dependent 
components Ei, ,,,2,1 ni K=  is assumption that after 
changing the reliability state subset by one of system 
components to the worse reliability state subset, 
lifetimes of the remaining system components in this 
reliability state subsets decrease dependably of the 
number of components which left that subset of 
reliability states [1]-[2]. More exactly, we assume 
that if ,1,,2,1,0, −= nKυυ  components of the 
system are out of the reliability state subset 

},...,1,{ zuu + , the mean values of the lifetimes 

)(' uT
i

 in this reliability state subset of the system 
remaining components are given by  
 

   )]([)]([)[()]('[ uTE
n

uTEucuTE
iii

υ−=  

   )],([)( uTE
n

n
uc i

υ−= ,,,2,1 ni K=                    (14) 
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where )(uc  is the component stress proportionality 
correction coefficient for each u, ,,,2,1 zu K=  [6]. 
The component stress proportionality correction 
coefficient can be estimated on the basis of 
behaviour of the component reliability state changing 
dynamics or assumed a priori. However, in both 
cases, it should be verified by the actual reliability 
data analysis and experts’ judgment. 
Next we consider case when components have the 
same exponential reliability functions of the form 
 
   )],(,),1,(,1[),( ztRtRtR

iii
K=⋅                            (15) 

 
for ),,0 ∞∈<t ,,,2,1 ni K=            
                       
where     
 

   








=≥≥

−

<

=

niut

    tu

t                 

utRi

,...,2,1,0)(,0

],)(exp[

0,1

),(

λ
λ                 (16)                                 

 
with intensity of departure )(uλ  from the reliability 

state subset },...,1,{ zuu + , .,,2,1 zu K=   
 
Hence, we get the following formula for intensities 
of departure from this reliability state subset of the 
remaining components 
 

   )(
)(

1
)()( u

n

n

uc
u λ

υ
λ υ

−
=                                    (17) 

 
for ,1,,2,1,0 −= nKυ  .,,2,1 zu K=  
This simple approach to the inside complex systems  
dependencies may be developed for the selected 
critical homogeneous reliability infrastructures and 
the analytical solutions for their reliability 
characteristics can be found. Unfortunately, in case 
of non-homogeneous infrastructures the analytical 
solutions are generally difficult to obtain and have to 
be supported by Monte Carlo simulation methods. 
On the assumption of components’ dependencies, 
described by (14), based on Markov processes, we 
can prove following theorem. 
Proposition 1. [2], [6] If in a homogeneous multi-
state “m out of n” system 
(i) components have exponential reliability 

function given by (15)-(16), 
(ii)  components are dependent, 
(iii)  intensities of departure from the reliability state 

subsets of components are given by (17), 
then the multi-state system reliability function is 
given by the formula 
 

   )],,(,),1,(,1[),( zttt RRR K=⋅                            (18) 
 
where 

   ∑ −=
−

=

mn

t
uc

un
t

uc

un

ut
0

]
)(

)(
exp[

!

]
)(

)(
[

),(
υ

υ

λ
υ

λ

R              (19) 

 
for ,0≥t  .,,1 zu K=      
The theoretical result presented in the form of 
Proposition 1 is a generalization of the results given 
in [2] and the proof of this proposition can be found 
in [4]. 
Next, from Proposition 1 we obtain following 
corollary. 
Corollary 1. If in a homogeneous multi-state series 
system 
(i) components have exponential reliability 

functions given by (15)-(16), 
(ii)  components are dependent;  
(iii)  intensities of departures of components from the 

reliability state subsets are given by (17), 
then the system reliability function is given by the 
vector  
 
   )],,(,),1,(,1[),( zttt RRR K=⋅                            (20) 
 
where 
 

   ],
)(

)(
exp[),( t

uc

un
ut

λ−=R ,0≥t .,,1 zu K=      (21)  

 
4. Reliability of multi-state “m out of l”-series 
system with dependent components 
 

To define a “m out of l” – series system, assume that 
[8]:  
– k is the number “m out of l” subsystems of a 

system,  
– l is the numbers of components of “m out of l” 

subsystems, 
– Eij, i = 1,2,...,k, j = 1,2,...,l, k, l ∈ N, are 

components of a system, 
– all components Eij have the same reliability state 

set as before {0,1,...,z}, 
– Tij(u), i = 1,2,...,k, j = 1,2,...,l, k, l ∈ N, are 

random variables representing lifetimes of 
components Eij in the reliability state subset 

},,...,1,{ zuu +  while  they  were  in the 
reliability state z at the moment t = 0,  

– sij(t) is a component Eij reliability state at the 
moment t, ),,0 ∞∈<t  while they were in the 
reliability state z at the moment t = 0. 
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Definition 6. A vector    
 
   Rij(t ⋅, ) = [Rij(t,0),Rij(t,1),...,Rij(t,z)],                    (22) 
 
where 
 
   Rij(t,u) = P(Sij(t) ≥ u| Sij(0) = z) = P(Tij(u) > t),   (23) 
 
for ),,0 ∞∈<t u = 0,1,...,z, i = 1,2,...,k, j = 1,2,...,l, is 
the probability that a component Eij is in the 
reliability state subset },...,1,{ zuu +  at the moment t, 

),,0 ∞∈<t  while it was in the reliability state z at the 
moment t = 0, called the multi-state reliability 
function of a component Eij.  
Definition 7. [7] A multi-state system is called an 
“ m out of l ”-series system if its lifetime T(u) in the 
reliability state subset  },...,1,{ zuu +  is given by    
 
   )(min)( )1(1

uTuT mliki +−≤≤
= , ,,...,2,1 lm = u = 1,2,...,z, 

 
where )()1( uT mli +−

 are the 1+− ml order statistics in 

the set of random variables  
 
   )(1 uTi , )(2 uTi , ..., )(uTil ,  ,,...,2,1 ki =  u = 1,2,...,z.  

 
The above definition means that the multi-state “m 
out of l ”-series system is composed of k subsystems 
that are multi-state “m out of l ” systems and it is in 
the reliability state subset },...,1,{ zuu +  if all its “ m 

out of l ” subsystems are in this reliability state 
subset. In this definition l denote the numbers of 
components in the “m out of l ” subsystems. The 
numbers k, mand l are called the system structure 
shape parameters.  
Definition 8. [7] A multi-state “m out of n”-system is 
called homogeneous if its components Eij have the 
same reliability function  
 
   )],(,),1,(,1[),( ztRtRtR

ijijij
K=⋅   

 
with the coordinates 
 
   ),(),( utRutR

ij
=  for ),,0 ∞∈<t   

   ,,,2,1 zu K=  ,,,2,1 ki K= .,,2,1 lj K=  
 
Then we can consider a multi-state “m out of l ”-
series system and its multi-state reliability function 
in case its components are dependent. To this end, 
we assume similarly as in Section 3 that if 

,1,,2,1,0, −= lKυυ  components of each “m out of l” 
subsystem of a system are out of the reliability state 

subset },...,1,{ zuu + , the mean values of lifetimes 

)(' uT
ij

 in the reliability state subset },...,1,{ zuu +  of 

this subsystem remaining components are given by  
 

   

)]([)(

)]([)]([)()]('[

uTE
l

l
uc

uTE
l

uTEucuTE

ij

ijijij

υ

υ

−=








 −=
  

 
for ,,,2,1 ki K=  ,,,2,1 lj K=  ,,,2,1 zu K=  where 

)(uc  are component stress proportionality correction 
coefficients [6]. 
Hence, in case subsystem components have 
exponential reliability functions with intensity of 
departure )(uλ  from the reliability state subset 

},...,1,{ zuu + , according to the well known 
relationship between the lifetime mean value in this 
reliability state subset and the intensity of departure 
from this reliability state subset we get following 
formula for intensities of departure from this 
reliability state subset of subsystem remaining 
components  
 

   )(
)(

1
)()( u

l

l

uc
u λ

υ
λ υ

−
=                                     (24) 

 
for ,1,,2,1,0 −= lKυ .,,2,1 zu K=           
 
Considering results for a “m out of n” system with 
dependent components given in Proposition 1 and 
the reliability function of a series system presented in 
Corollary 1, we can obtain formula for the reliability 
function of a “m out of l”-series system in the form 
of following proposition. 
Proposition 2. 
If in a homogeneous multi-state “m out of l”-series 
system 
(i) components have exponential reliability 

function given by 
 
   )],(,),1,(,1[),( ztRtRtR

ijijij
K=⋅                           (25) 

 
where  
 

   




≥−

<
=

,0],)(exp[

,0,1
),(

t   tu

t                 
utRij λ

                        (26) 

 
for ,,,2,1 zu K=  ,,,2,1 ki K= ,,,2,1 lj K=   
with intensity 0)( ≥uλ  of departure from the 
reliability state subset },...,1,{ zuu + ,  

(i) components are dependent, 
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(ii)  intensities of departure from the reliability state 
subsets of components are given by (24), 

then the multi-state system reliability function is 
given by the formula 
 
   )],,(,),1,(,1[),( zttt RRR K=⋅                            (27) 
 
where 

     ∑ −=
−

=

ml
kt

uc

ul
t

uc

ul

ut
0

]]
)(

)(
exp[

!

]
)(

)(
[

[),(
υ

υ

λ
υ

λ

R            (28) 

 
for ,0≥t  .,,1 zu K=   
 
5. Reliability of multi-state “m out of l”- series 
system with dependent components at 
variable operation conditions 
 

We assume that a system during its operation process 
is taking ,, Nv

oo
∈ν  different operation states 

..,..,, 21 o
zzz ν  We define the system operation 

process )(tZ , ),,0 +∞∈<t  with discrete operation 

states from the set  }..,..,,{ 21 o
zzz ν  Further, we 

assume that the system operation process Z(t) is a 
semi-Markov process [5], [8]-[12]. 
We assume that changes of the system operation 
process )(tZ  states have an influence on the 
reliability of system multi-state components and 
reliability structure of a system as well. We mark by 

),()(

1
uT b

 
),()(

2
uT b

 
)(..., )( uT b

n  conditional lifetimes in 
the reliability states subset },...,1,{ zuu +  of

 
system 

components ,1E ,2E ..., 
n

E  and by )()( uT b

 
conditional 

lifetime of a system in the reliability states subset 
},...,1,{ zuu + , ,,...,2,1 zu =  while a system is at the 

operation state ,bz .,...,2,1 ovb =  Further, we define 

the conditional reliability function of system’s multi-
state component 

i
E , ,,...,2,1 ni =  while a system is at 

the operation state ,bz ,,...,2,1 ovb =  by the vector 

[8], [12]  
 

   
)()],([ b

i
tR ⋅ =[1, ,)]1,([ )(b

i
tR ..., )()],([ b

i
ztR ],         (29) 

 
where  
 

   
))()(()],([ )()(

b

b

i

b

i
ztZtuTPutR =>=                  (30) 

 
for ),,0 ∞∈<t ,,...,2,1 zu = ,,...,2,1 ni = ,,...,2,1 ovb =  
and the conditional reliability function of a multi-
state system while a system is at the operation state 

,bz  ,,...,2,1 ovb =  by the vector [8], [12] 

 

   
)()],([ bt ⋅R = [1, ,)]1,([ )(btR ..., )()],([ bztR ,           (31) 

 
where  
 
   )()],([ butR ))()(( )(

b
b ztZtuTP =>=                 (32) 

 
for ),,0 ∞∈<t  ,,...,2,1 zu = .,...,2,1

o
b ν=  

 
The system conditional lifetimes  
 

   
))(),...,(),(()( )()(

2
)(

1
)( uTuTuTTuT b

n
bbb =

  
 
defined for ,,...,2,1 zu = ,,...,2,1

o
b ν=  are dependent 

on the conditional lifetimes ),()(

1
uT b

 
),()(

2
uT b

 
),(..., )( uT b

n  
of system components at the operation 

state bz  and coordinates of the system conditional 
multi-state reliability functions 

 
 

 

   
)()],([ butR )()()(

1
)])],([,...,)],(([[ bb

n

b utRutRR=
 

 
defined for ),,0 ∞∈<t  ,,...,2,1 zu =  ,,...,2,1

o
b ν=  

are dependent on the conditional reliability function 
)()(

2

)(

1
)],([,...,)],([,)],([ b

n

bb utRutRutR
 
of components

 
at the operation state bz . 

Consequently, we mark by T(u) the system 
unconditional lifetime in the reliability states subset 
{ u,u+1,...,z}, u = 1,2,…,z, and we define the system 
unconditional reliability function by the vector 
 
   ),( ⋅tR = [1, ),1,(tR ..., ),( ztR ],                           (33) 
 
where  
 
   ))((),( tuTPut >=R                                           (34) 
 
for ),,0 ∞∈<t .,...,2,1 zu =  
In case system operation time θ  is large enough, the 
system unconditional reliability function is given by 
[8], [12]   
   

   ),( utR ,]),([ )(

1

b
ov

b
b utp∑≅

=
R ,0≥t                         (35) 

 
where ,)],([ )(butR  ,,...,2,1 zu =  ,,...,2,1 ob ν=  are the 
coordinates of the system conditional reliability 
functions defined by (31)-(32) and 

b
p  are limit 

transient probabilities of the system operation 
process at the operation state ,

b
z ,,...,2,1 ovb =  

defined in [8]. 



Journal of Polish  Safety and Reliability Association 
Summer Safety and Reliability Seminars, Volume 5, Number 1, 2014                     

 

 27 

In reliability analysis of multi-state system with 
dependent components at variable operation 
conditions we assume that both intensity of departure 
λ(u) from the reliability state subset {u,u+1,...,z} and 
component stress proportionality correction 
coefficients c(u), u = 1,2,…,z, are influenced by 
changes of the system operation process states and 
their values can differ at various operation states 

,
b

z .,...,2,1 ob ν=  
Proposition 3. If in a homogeneous multi-state “m 
out of n”-series system 
(i) components have exponential reliability 

function given by  
 
   )()],([ b

ij tR ⋅ = [1, ,)]1,([ )(b

ij tR ..., )()],([ b

ij ztR ]     (36) 

 
where     
 

   




≥−
<

=
,0],)]([exp[

,0,1
)],([

)(

)(

t   tu

t                       
utR

b

b

ij λ
             (37) 

 
for ,,...,2,1 zu =  ,,,2,1 ki K=  ,,,2,1 lj K=  

,,...,2,1
o

b ν=  with intensity of departure 

0)]([ )( ≥buλ  from the reliability state subset 
},...,1,{ zuu + ,   

(ii)  components are dependent, 
(iii)  intensities )()]([ buλ of departure from the 

reliability state subsets of components at the 
operation states 

b
z  are given by (24), i.e.  
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for ,1,,2,1,0 −= lKυ ,,,2,1 zu K= ,,...,2,1 ob ν=   
then the multi-state system reliability function is 
given by the formula 
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for ,0≥t  .,,1 zu K=    
 
 
 
 

6. Reliability of a shipyard rope 
transportation system 
 

Ship-rope elevators are used to dock and undock 
ships coming to shipyards for repairs. The elevator 
utilized in shipyard, with the scheme presented in 
Figure 1, is composed of a steel platform-carriage 
placed in its syncline (hutch).  
The platform is moved vertically with 10 rope-
hoisting winches fed by separate electric motors. 
Motors are equipped in ropes with diameter 47 mm 
each rope having a maximum load of 300 tones. 
During ship docking the platform, with a ship settled 
in special supporting carriages on the platform, is 
raised to the wharf level. During undocking, the 
operation is reversed. While a ship is moving into or 
out of a syncline and while stopped in the upper 
position the platform is held on hooks and loads in 
ropes are relieved. Since the platform-carriage and 
electric motors are highly reliable in comparison to 
ropes, which work in extremely aggressive 
conditions, in our further analysis we will discuss 
reliability of the rope system only. 
 

 
 

Figure 1. The scheme of the ship-rope elevator 
 
Considering the tonnage of docked and undocked 
ships by the rope elevator we can divide system’s 
load into six groups and due to fact that the rope 
elevator system depends mainly on the tonnage of 
docking ships we can distinguish following operation 
states of the rope elevator system operation process 
[3]:  

1z  – without loading (the system is not working), 

2z  – loading over 0 up to 500 tones, 

3z  – loading over 500 up to 1000 tones, 

4z  – loading over 1000 up to 1500 tones, 

5z  – loading over 1500 up to 2000 tones, 

6z  – loading over 2000 up to 2500 tones. 
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Figure 2. The scheme of the shipyard rope 
transportation system reliability structure 
 
In all six operational states system has the same 
structure. Considered shipyard rope transportation 
system is composed of k = 10 subsystems i.e. ropes 
linked in series and each rope is composed of l = 22 
parallel-linked strands.  
The assumption that ropes satisfy technical 
conditions when at least one of its strands satisfies 
these conditions is not always true. In reality it is 
said that a rope is changing its reliability state subset 
after some number of strands change their reliability 
state subsets. Therefore better, closer in reality 
approach to the system reliability evaluation is 
assumption that a rope is “m out of n” system. 
Further, on the basis of rope’s parameters given in its 
technical certificate and experts’ opinions, we 
assume that m = 5 and a rope is ”5 out of 22” system. 
Considering strands as basic components of a system 

,
ij

E  ,10,,2,1 K=i  ,22,...,2,1=j  we conclude that the 
ship-rope elevator is a regular ”5 out of 22”-series 
system with the reliability structure presented in 
Figure 2.  
From the operation process analysis and its statistical 
identification presented in [3] we obtain limit values 
of transient probabilities )(tpb  at particular 
operational states 

bz , ,6,...,1=b  respectively:  
 
   ,9810.0

1
=p ,0032.0

2
=p ,0021.03 =p  

   ,0083.0
4

=p ,0028.05 =p .0026.06 =p             (41) 

 
According to rope reliability data given in their 
technical certificates and experts’ opinions based on 
the nature of strand failures following four reliability 
states have been distinguished: 
− a reliability state 3 – a strand is new, without any 

defects, 
− a reliability state 2 –number of broken wires in a 

strand is greater than 0% and less than 25% of all 
its wires, or corrosion of wires is greater than 0% 
and less than 25%, 

− a reliability state 1 –number of broken wires in a 
strand is greater than or equal to 25% and less 
than 50% of all its wires, or corrosion of wires is 
greater than or equal to 25% and less than 50%, 

− a reliability state 0 – otherwise (a strand is failed). 
We fix the critical reliability state r = 2. 
Moreover, we assume that components ,

ij
E  

,10,,2,1 K=i  ,22,...,2,1=j  of the ship-rope elevator 
i.e. strands have four-state reliability functions at the 
operation state 

bz , ,6,...,1=b  with following 
exponential conditional reliability functions co-
ordinates at the operational state 1z : 
 
   =)1()]1,([ tR
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]1613.0exp[ t− 1/year,  

   =)1()]2,([ tR
ij

]2041.0exp[ t− 1/year,  
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at the operational state 2z :  
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at the operational state 3z :  
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at the operational state 4z :  
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ij
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at the operational state 5z :  
 
   =)5()]1,([ tR

ij
]3333.0exp[ t− 1/year,  

   =)5()]2,([ tR
ij
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and at the operational state 6z :  
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Then assuming system components’ dependence 
defined by (38) and applying directly the formulae 
(39)-(40), we get the system reliability function  
 
   )],3,(),2,(),1,(,1[),( tttt RRRR =⋅  t ≥ 0,           (42) 
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Approximate graphs of coordinates of the complex 
system reliability function are presented in Figure 3.  
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Figure 3. The graph of the ship-rope elevator 
reliability function ),( ⋅tR coordinates for 1)( =uc . 
 
The expected values and standard deviations of the 
shipyard rope transportation system unconditional 
lifetimes in the reliability state subsets },3,2,1{  },3,2{  

},3{  calculated from results given by (42)-(45), 

according to (5)-(7), for ,1)]([ )( =buc  3,2,1=u  
,6,...,1=b  respectively are:  

 
   )1(µ ≅ 3.377, 557.0)1( ≅σ years,               (46) 
   )2(µ ≅ 2.667, 445.0)2( ≅σ years,                    (47) 
   )3(µ ≅ 2.340, 393.0)3( ≅σ years,                    (48) 
 
and further, considering (9) and (46)-(48), the mean 
values of unconditional lifetimes in the particular 
reliability states 1, 2, 3, for ,1)]([ )( =buc 3,2,1=u  

,6,...,1=b  respectively are:    
 
     710.0)2()1()1( =−= µµµ years,    
     327.0)3()2()2( =−= µµµ years,    
     340.2)3()3( == µµ years.                               (49) 
 
Since the critical reliability state is r = 2, then the 
system risk function, according to (10), is given by  
 
   r(t) )2,(1 tR−=  
 

where system unconditional reliability function co-
ordinate )2,(tR  is given by (44). 
Hence, by (11), the moment when the system risk 
function exceeds a permitted level, for instance δ  = 
0.05, for ,1)]2([ )( =bc ,6,...,1=b  is  
 
   τ = r−1(δ) 929.1≅  years ≅  1 year 339 days.     (50) 
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Figure 4. The graph of the ship-rope elevator risk 
function )(tr  for ,1)]2([ )( =bc .6,...,1=b  
 
The expected values and standard deviations of the 
shipyard rope transportation system unconditional 
lifetimes in the reliability state subsets 

},3,2,1{ },3,2{ },3{  for other values of components 
stress proportionality correction coefficients 

,)]([ )(buc ,,...,2,1 zu = ,6,...,1=b  are given in Table 1. 
 
Table 1. The expected values and standard deviations 
of the shipyard rope transportation system. 
 

,)]([ )(buc  
,,...,2,1 zu =

,6,...,1=b  

)1(µ  
)1(σ  

(years) 

)2(µ  
)2(σ  

(years) 

)3(µ  
)3(σ  

(years) 

0,5 1,688 
0,278 

1,334 
0,222 

1,170 
0,196 

0,6 2,026 
0,334 

1,600 
0,266 

1,404 
0,235 

0,7 2,364 
0,390 

1,867 
0,311 

1,638 
0,274 

0,8 2,701 
0,445 

2,134 
0,355 

1,872 
0,314 

0,9 3,039 
0,501 

2,400 
0,400 

2,106 
0,353 

1,1 3,714 
0,613 

2,934 
0,489 

2,573 
0,432 

1,2 4,052 
0,668 

3,201 
0,534 

2,807 
0,471 

1,3 4,388 
0,719 

3,467 
0,578 

3,041 
0,511 

1,4 4,715 
0,755 

3,734 
0,623 

3,275 
0,550 

1,5 5,018 
0,761 

4,001 
0,667 

3,509 
0,589 
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7. Conclusions 
 

The main purpose of this paper was linking inside 
and outside of complex system dependencies that can 
have significant influence on system reliability. 
Theoretical results of reliability analysis of complex 
multi-state systems with dependent components in 
variable operation conditions are applied to the 
shipyard ship-rope elevator. We analyze the shipyard 
transportation system in case components have 
exponential reliability functions with intensity of 
departure from the reliability state subset and with 
components stress proportionality correction 
coefficients different in various operation states. 
Obtained results illustrate that after decreasing a 
reliability state by one of components in a 
subsystem, inside interactions among the remaining 
components may cause further components 
reliability states decrease. 
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