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1. Introduction 
 

A blast wall is a physical barrier separating a 
vulnerable object from a potential explosion which 
produces a blast loading capable to damage the 
object [13]. Blast walls are normally deployed to 
provide structural protection against military 
weapons or improvised explosive devices. However, 
blast walls are in principle suitable to mitigate the 
level of blast loading generated by accidental 
explosions occurring in industrial facilities and 
during a transportation of hazardous goods. Such 
blast loading is sometimes accompanied by impact of 
projectiles and spread thermal radiation. 
Blast wall can be relatively lightweight and weak and 
still offer some degree of protection because a high 
level of deformation can absorb a significant amount 
of the blast wave energy. The cost of rigid, non-
destructible walls is often prohibitive and a 
significant mitigation of blast can be achieved using 
relatively lightweight frangible or sacrificial walls 
[3], [13]. The energy of blast loading can be 
absorbed by lightweight systems used as sacrificial 
cladding (SC). They can be mounted on the front of a 

non-sacrificial structure to be protected or serve as a 
component of a blast wall [4]–[6], [16]. 
The present study describes how to design in a 
probabilistic way an SC of a blast wall deployed to 
protect vulnerable object against an accidental 
explosion. The basic idea is that a cladding failure 
probability may serve as a measure of explosive 
damage to the SC. It is shown how to estimate this 
probability by an approach which combines methods 
of structural analysis (SRA) and quantitative risk 
assessment (QRA). The estimation is based on a 
separate treatment of stochastic (aleatory) and 
epistemic (state-of-knowledge) uncertainties related 
to a mechanical model of SC. The proposed 
estimation procedure allows also the data on blast 
loading to be uncertain in the epistemic sense. The 
study is aimed at increasing safety of industrial 
facilities and parts transportation infrastructure 
where accidental explosions can cause major 
accidents. 
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Abstract 
 

A design of a blast wall is considered. Methods of structural reliability analysis and quantitative risk 
assessment are applied to the design. The basic idea of this design is to apply a probability of failure of 
cladding components as a criterion of damage to the cladding. This probability is used as an estimate of the 
proportion of cladding components destroyed by an explosion. The cladding failure probability is estimated by 
quantifying and propagating uncertainties related to a mechanical model of cladding and elements of the 
statistical sample containing records of blast loading. It is demonstrated how to estimate the cladding failure 
probability when the size of this sample is small from the standpoint of classical statistics. The case study 
included in the paper considers a design of a cladding for a blast wall to be deployed for protecting a fuel tank 
against an explosion of a railroad tank car. 
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Figure 1. A schematic illustration of the epistemic uncertainty in the value of the fragility function )( y
~

fP  

 
2. Failure probability of sacrificial cladding 
as a measure of damage degree 
 

In the case where all individual components of SC 
are nominally identical or a continuous SC can be 
discretised notionally into nominally identical 
components, a different number of them will fail 
(will be “sacrificed”) at different intensities of 
reflected blast wave. Characteristics of a pressure 
history of this wave can be represented by a  
ny-dimensional vector y with the components  
y1, y2, y3, … , 

yny  expressing overpressure, positive 

duration, impulse, etc. (ny  ≥ 1). Then the relative 
number of the failed components and so the degree 
of damage to SC can be estimated by a conditional 
probability of failure of an individual component: 
 
   )()( y|y iif DPP U=  (1) 

 
where Di is the random event of damage to an SC 
component related to the failure mode i (the ith 
damage event, in brief). The function Pf(y) is known 
in SRA and QRA as a fragility function and its 
arguments y are called the demand variables (e.g., 
[15]). 
If the blast wave characteristics are uncertain and 
represented by a random vector Y, the unconditional 
probability of SC component failure, Pf, can be 
expressed as a mean value of the fragility function 
Pf(⋅) with a random arguments Y, namely, 
 
   ))((d)()( Yyyy Yy Y fff PEfPP == ∫  (2) 

 
where fY(y) is the joint probability density function of 
Y. (2) is a standard definition of a failure probability 
widely used in SRA. The problem of estimating Pf 

for blast loading generated by an accidental 
explosion is that statistical data for fitting the model 
fY(y) will typically be unavailable. However, Pf can 
be estimated with a small-size sample consisting of 
observations yj of Y obtained by experiment [17]. Let 
this sample be 
 
   y = {y1, y2, … , yj, … , yn} (3) 
 
Elements of y can be transformed into fragility 
function values Pf(yj) and a new, artificial sample 
{ Pf(y1), Pf(y2), … , Pf(yj), … , Pf(yn)} formed. The 
latter sample can be used to compute a bootstrap 
confidence interval []0, fP  for Pf. The closer is the 

upper limit fP  to unity, the larger number of SC 

components should be expected to be lost in case of 
an explosion. Consequently, fP  can be used as a 

conservative measure of the damage to a blast wall. 
The interval estimate []0, fP  comes from the 

classical, Fisherian statistics. If necessary, the sample 
y can be used to estimate Pf in a Bayesian format, 
namely, by a conservative percentile of a posterior 
distribution obtained by applying y [7], [18]. 
The form of the sample y assumes that there are no 
uncertainties in the data yj. This assumption may not 
be correct in a number of cases. For example, if the 
blast wave characteristics are not directly recorded in 
experiment but are obtained by means of a 
mathematical modelling, the elements of y can be 
uncertain (fuzzy). Uncertainty in an individual 
element of y, say, the element j can be quantified by 
an epistemic probability distribution with the density 
fj(y) [9]. A one-dimensional visualisation of a crisp 
and uncertain data points yj and fj(y) is shown in 



Journal of Polish Safety and Reliability Association 
Summer Safety and Reliability Seminars, Volume 4, Number 2, 2013 

 

 261

Figure 1. The interval estimation of Pf is possible 
also with the uncertain, as shown in the next section. 
 
3. Dealing with uncertainties in the 
mechanical model of sacrificial cladding 
 

In the case where the damage event(s) Di are backed 
by the model(s) mi, the fragility function Pf(y) can be 
expressed as 
 
   0))),((()( ≤= θθθθ|yZy iif mPP U  (4) 

 
where Z is the vector of random input variables; θθθθ is 
the vector of parameters of the model of mi(⋅). The 
random safety margin mi(Z, y | θθθθ) is a standard 
function of SRA, in which the vector Z and so the 
function mi express the stochastic uncertainty (e.g., 
[11]). The uncertainty modelling prevailing in QRA 
requires to consider an epistemic uncertainty related 
to the parameter vector θθθθ (e.g., [1]). This uncertainty 
can be expressed by a random vector Θ with a joint 
density π(θθθθ). One or more components of Θ can be 
used to express uncertainty in the accuracy of the 
model mi(⋅). One can interpret the epistemic density 
π(θθθθ) of the as a prior distribution which can be 
updated, at least in theory, given a new data. Then 
the posterior density will have the form π(θθθθ | data). 
With the random parameter vector ΘΘΘΘ, the fragility 
function P(Di | y) becomes an epistemic random 
variable defined as 
 

   0)))|,((()()( ≤== ΘyZ|yy
~

iiff mPPP UΘΘΘΘ  (5) 

 
An illustration of the random fragility function 

)( y
~

fP  is shown in Figure 2. This illustration 

assumes that the vector y has only one component, 
for instance, the positive overpressure of the 
reflected blast wave. 
The typical approach to dealing with epistemic 
uncertainties in fragility functions is establishing 
confidence bounds around the point estimates of 
fragility curve or median fragilities (e.g., [15]). Most 
authors consider the confidence bounds the final 
result of analysis. However, a further propagation of 
the epistemic uncertainty quantified by ΘΘΘΘ is 
necessary to estimate the failure probability Pf. In 
case where the explosion demand y is represented by 
the small-size sample y, the estimation of Pf can be 
expressed as an estimation of a mean of fragility 

function values with uncertain (fuzzy) data )( jfP y
~

 

(j = 1, 2, … , n). Such data can be used for updating a 
Bayesian prior distribution expressing epistemic 
uncertainty in Pf [18]. However, if a development of 
a prior for Pf is problematic or there is no interest in 

the Bayesian estimation of Pf, the failure probability 
can be estimated by a Fisherian confidence interval 
computed by means of a simulation-based procedure 
explained in the remainder of the present section. 
An estimate of Pf can be obtained by computing 
estimates of the fragility function values )|( kjfP θθθθy  

for all n elements jy  of the sample y  and the values 

θθθθk of the parameter vector ΘΘΘΘ generated from π(θθθθ) or 
π(θθθθ | data) (k = 1, 2, … , N). This will require to 
estimate the fragility function n×N times. The kth 
loop of the estimation of Pf should start from 
sampling the value θθθθk. For each θθθθk, the estimates jkp̂  

of )|(f kjP θθθθy  should be computed for all elements of 

y  and grouped into the sample 

} , ... 2, 1,   ,{ njp jkk == ˆp̂ . An illustration of three 

elements of kp̂  is given in Figure 2. The sample kp̂  
can be used to calculate a one-sided bootstrap 
confidence interval []0, kp  for Pf. A repetition of this 
process N times will yield a sample consisting of N 
upper limits of the confidence interval, namely, {kp , 
k = 1, 2, … , N }. This sample will express the 
epistemic uncertainty related to the upper limit of 
this interval (see the abscissa axis in Figure 2). A 
conservative percentile of this sample, say, 1)0.9]([ +⋅Np  

can be used as the final result of the conservative 
estimation of the failure probability Pf. 
In the case of the uncertain data expressed by the 
densities fj(y), the procedure of the estimation of Pf 
can be applied in a similar way, with the difference 
that some number Nl of the samples yl = {y1l, y2l, … , 
yjl, … , ynl} will have to be sampled from the 
distributions fj(y) (j = 1, 2, … , n). A one-
dimensional illustration of the sample element yjl is 
given in Figure 1. The procedure shown in Fig. 4 
should be applied to each yl. A repetition of this 
process Nl times will yield a sample of confidence 
interval limits, { kp , k = 1, 2, … , N×Nl}. A 

percentile of this sample, say, 1)0.9]([ +⋅⋅ lNNp  may serve 

as a conservative estimate of Pf. Clearly, the 
estimates 1)0.9]([ +⋅⋅ lNNp  will tend to be more 

conservative than 1)0.9]([ +⋅Np , because the variability 

of the limits kp  will be larger in the former case than 
in the latter. 
 
4. Case study 
 

The estimation of the SC failure probability Pf will 
be illustrated for a blast wall intended to protect 
against a railway tank car explosion known as 
boiling-liquid expanding vapour explosion 
(BLEVE). The tank car is used for a transportation of 
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liquefied propane. Mechanical effects of BLEVE 
occur as blast and projectiles [19]. The present case 
study will consider the blast loading only whereas 
the protection against projectiles will be addressed in 
brief at the end of this section. 
The object to be protected by the blast wall is a 
diesel fuel tank (”target”) located 63 m form external 
railway tracks (Figure 2). The worst case scenario 
will be considered, according to which the angle of 
incidence of the blast wave will be equal to 90 
degrees (Figure 3). The fuel tank is surrounded by a 
protective embankment used to stabilise the blast 
wall. The wall is to be built from non-sacrificial 
posts and SC consisting of profiled steel sections 
(Figure 4). 
 

 
 

Figure 2. The elevation of the accident situation (see 
Figure 3) 
 
The elements yj = (y1j, y2j) of the sample y will 
consist of overpressure y1j and positive phase 
duration y2j of the reflected blast wave, respectively. 
Experiments which could yield y are very expensive. 
Therefore, y was obtained by calculation and not by 
a direct recording yj. The real-world statistical 
sample used in this case study was compiled from 30 
data pairs (x1j, x2j), where x1j and x2j is weight and 
pressure of liquefied propane in the tank car j, 
respectively (Table 1, Cols. 2 and 3). The pairs 
(x1j, x2j) were used to calculate the mass of 
trinitrotoluene (TNT) which could cause an 
explosion with an energy equivalent to the energy of 
BLEVE (Table 1, Col. 4) [19]. The TNT mass and 
the explosion stand-off equal to 48.5 m were used to 
calculate y1j and y2j by applying a standard empirical 
model developed for TNT [10] (Table 1, Cols. 5 and 
6). 
Two random damage events D1 and D2 related to the 
maximum dynamic response of profiled sections and 
backed by the respective safety margins m1 and m2 
expressed by (6) will be considered. The fragility 
function Pf(y) will have the form )|( 21 yDDP U . 
The safety margins expressed as functions of random 
variables present in the mechanical model of profiled 
sections have the form 
 
   11 )|()|,( ypm R −= ΘZΘyZ  (6a) 

   =)|,(2 ΘyZm   

          Θ)y(ZΘ)y(Zmax |,|, ,, dynplpl uu −=  (6b) 

 
where )  , , ,( 4321 ZZZZ=Z  and 

)  , ... , ,( 521 ΘΘΘ=Θ  are the vectors used to model 
aleatory and epistemic uncertainties, respectively 
(Table 2); )(⋅Rp , upl,max(·) and upl,dyn(·) are 
deterministic functions used to compute quantities 
given in (6). 
 

 
 

Figure 3. The plan of the potential accident site 
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Figure 4. Details of the blast wall: (a) vertical 
section; (b) profiled steel section; (c) view from the 
back showing a safety net; (d) plan 

 
Probability distributions of the components of Z and 
Θ were chosen partly on the basis of information on 
natural variability of the quantities used in the 
analysis and partly on the basis of subjective 
reasoning. Cross-sectional dimensions of profiled 
sections are considered to be fixed (deterministic) 
quantities (Figure 4b). 
 
 
 
 
 
 
 
 
 



Journal of Polish Safety and Reliability Association 
Summer Safety and Reliability Seminars, Volume 4, Number 2, 2013 

 

 263

 
Table 1. Characteristics of the reflected blast wave 
y1j and y2j 
 

j x1j, kg x2j,kPa TNT, kg y1j, kPa y2j, ms 
1 2 3 4 5 6 

1 60939 2575 83.29 13.51 35.45 
2 57566 2462 90.30 14.04 35.69 
3 57419 2395 77.14 13.04 35.22 
4 59472 2602 99.41 14.69 35.97 
5 54108 2453 73.21 12.72 35.07 
6 56751 2312 66.63 12.18 34.80 
7 61307 2615 71.69 12.60 35.01 
8 59950 2264 89.97 14.01 35.67 
9 55176 2572 74.78 12.85 35.13 
10 58094 2531 73.30 12.73 35.07 
11 57839 2446 83.50 13.53 35.45 
12 58116 2270 52.10 13.42 35.40 
13 57777 2424 83.45 13.52 35.45 
14 60724 2457 79.33 13.21 35.30 
15 56333 2411 77.83 13.09 35.25 
16 55878 2193 71.71 12.60 35.01 
17 59339 1922 64.05 11.96 34.69 
18 52549 2301 64.18 11.97 34.70 
19 59697 2364 82.32 13.44 35.41 
20 59215 2406 74.52 12.83 35.12 
21 60088 2492 86.58 13.76 35.56 
22 55379 2581 78.12 13.11 35.26 
23 58567 2502 71.68 12.60 35.01 
24 53204 2613 73.93 12.78 35.10 
25 57594 2204 81.13 13.35 35.37 
26 58586 2355 70.36 12.49 34.95 
27 53499 2461 78.41 13.14 35.27 
28 51802 2508 79.44 13.22 35.31 
29 57106 2351 68.00 12.30 34.86 
30 55286 2471 83.16 13.50 35.44 

 
The probability distributions of the aleatory random 
variables Z1 to Z3 can be easily specified from 
information on random properties of steel structures 
(e.g., [14]). The natural period of elastic vibration, 
Z4, is considered to be an aleatory quantity because it 
can be measured experimentally. We assumed the 
nominal value of this period, 3.4 ms, given by Louca 
et al. [12] to be a mean value of a normal distribution 
of Z4. The probability distributions of the epistemic 
variables grouped into the vector Θ were used to 
express uncertainty related to parameters of the 
models pR(·), upl,max(·) and upl,dyn(·). These 
distributions quantify the doubts expressed by Louca 
et al. [12] and Juocevičius and Vaidogas [8] about 
quantities represented by Θ. 
The functions on the right-hand side of (6) are based 
on a mechanical model of profiled sections proposed 
by Louca et al. [12]. The dynamic pressure capacity 
is given by 
 

   54
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where lE(·) is the effective span; wel is the 
deterministic elastic section modulus depending on 
the cross-sectional dimensions; l is the cross-
sectional width (Figure 4b). 
The maximum plastic dynamic deflection capacity is 
given by 
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where µ(·) is the function used to compute the 
ductility ratio and given by 
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where φ(·,·) is the function fitted to the graphs 
developed by in the book [2] and used for retrieving 
values of µ(·). 
The dynamic plastic deflection due to the blast load 
is computed using the following expression 
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where δ(y2) is the dynamic loading factor computed 
by 
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In the present case study, the ranges of the sample 
components y1j and y2j are [11.6 kPa, 14.4 kPa] and 
[23.0 ms, 25.8 ms], respectively. 
Figure 5 shows a histogram of the sample 

00}5 , ... 2, 1,   ,{ =kpk  obtained by generating 500 

values θθθθk and applying the procedure described 
above (N = 500). Exceeding the maximum dynamic 
plastic deflection (the event D2) was a dominating 
failure mode and this failure determined the 
confidence limits kp . The 90th percentile of the 

above sample, 1)0.9]([ +⋅Np , is equal to 0.263. This 

value is a conservative estimate of the SC failure 
probability Pf. It means that less than 26.3% of 
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Table 2. Aleatory and epistemic random variables used in the analysis of the blast wall shown in Figure 4 
 

Description and notation 

(notation used this study ≡ notation from the original text by Louca et al. [16]) 
Mean/coeff. 
of variation 

Probability 
distribution 

Aleatory random quantities (components of Z) 

Span (spacing of posts) Z1 ≡ L (m) (see Figure 4d) 2.0/0.005* Lognormal 

Static yield strength of profiled section steel, Z2 ≡ py (MPa) 554/0.11* Lognormal 

Modulus of elasticity of profiled section steel, Z3 ≡ E (GPa) 200/0.06* Normal 

Natural period of elastic vibration of profiled sections, Z4 ≡ T (ms) 3.4/0.05 Normal 

Epistemic random quantities (components of ΘΘΘΘ) 

Enhancement factor for steel strength, Θ1 ≡ γ; the uncertainty in Θ1 was modelled by 
the expression 1 + ∆×ξ**  (∆ = 0.12) 

1.012/0.011 Beta, ξ ~ Be(1, 9) 

The factor of uncertainty related to the model of ductility ratio µ, Θ2 1/0.04 Normal N(1, 0.04) 

Reduction factor for stiffness of profiled sheet, Θ3 ≡ fK; the uncertainty in Θ3 was 
modelled by the expression 1 – ∆×ξ***  (∆ = 0.3); the mode of Θ3 is equal to 0.85 

0.85/0.05 Beta, ξ ~ Be(3, 6) 

Reduction factor for transverse stress effect, Θ4  ≡ fC 0.99/0.085 Beta Be(70, 1) 

Reduction factor for flattering of cross-section, Θ5 ≡ fF; the uncertainty in Θ5 was 
modelled by the expression 1 – ∆×ξ*** (∆ = 0.2); the mode of Θ5 is equal to 0.952 

0.933/0.038
2 Beta, ξ ~ Be(2, 4) 

* Spaethe [14]; ** This linear transformation is used to obtain a Beta distribution defined on the interval ]1, 1.12[ which 
covers potential values of the strength enhancement factor [8]; *** This linear transformation is used to obtain a Beta 
distribution defined on the interval [∆, 1] 
 
profiled sections will be destroyed (“sacrificied”) in 
case of an explosion. This percentage can be changed 
as needed by redesigning SC, say, choosing a 
different profiled section. 
A BLEVE produces high-energy projectiles 
generated by a rupture of tank car vessel [19]. It is 
highly probable that the blast wall under study will 
have to sustain an impact by some of them. 
Therefore, the height of the wall will be governed by 
unsafe trajectories of potential projectiles (Figure 2). 
The profiled sections will not be able to stop larger 
projectiles and, in our opinion, a safety net should be 
added behind the cladding (Figure 4c and d). The net 
can be designed to sustain not only primary 
projectiles from vessel rupture but also profiled 
sections which will fail under blast loading and/or 
projectile impact. The space between cladding and 
safety net, δnet, should allow to reach the maximum 
dynamic plastic deflection of the profiled sections, 
upl,max (Figure 4d). As this deflection is a random 
quantity, the value of δnet can be chosen by reducing 
the probability ))|,(( , maxpluP δ≥ΘyZmax  to some 

small and tolerable value. 
The horizontal cables of the net can span over 
several posts. Cable ends can be anchored in rigid 
towers distributed along the barrier (Figure 3). 
Additional anchors can be added where the cables 
cross the posts (Figure 4d). This will add extra 
stability to the posts and so the cladding. However, a 
detailed design of safety net, posts, and towers was 
beyond the scope of this case study. 
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Figure 5. Histogram of the sample {  kp , k = 1, 2, 
… , 500} 

 
6. Conclusions 
 

The design of sacrificial cladding (SC) for blast walls 
deployed as protection against accidental explosions 
has been considered. Such a design may face 
considerable uncertainties related to potential blast 
loading. The behaviour of SC components subjected 
to blast loading may also be uncertain to a large 
degree. A consistent quantification and propagation 
of these uncertainties is possible by combining 
methods of structural reliability analysis and 
quantitative risk assessment. An application of these 
methods to an analysis of SC components can yield 
an estimate of probability of their failure under blast 
loading. This probability can be used as a measure of 
explosive damage to SC provided that the SC 
consists of nominally identical components. A 
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component failure probability will be proportional to 
the relative number of the components which may 
fail (be “sacrificed”) in case of an explosion. 
An estimation of the SC failure probability will 
require to specify a probabilistic model of blast wave 
characteristics. Such model can be difficult to obtain 
as post-mortem data on accidental explosions are 
rarely available in the amount allowing to compile a 
statistical sample for fitting the model. However, the 
SC failure probability can be estimated without such 
model. A sample of blast loading characteristics 
recorded in experiment or estimated by explosion 
simulation can be directly applied to the probability 
estimation. The size of this sample can be small from 
the standpoint of the classical statistics. Such 
estimation can be carried out by a simulation-based 
propagation of stochastic and epistemic uncertainties 
through a fragility function developed for an SC 
component. The estimate will have the form of a 
one-sided confidence interval of the failure 
probability. The upper limit of this interval can be 
used for making decisions concerning the degree of 
the damage to SC which may be caused by an 
explosion. 
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