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1. Introduction 
 

We have considered a reliability function of the 
object under assumptions that the failure rate is a 
random (stochastic) process with nonnegative and 
right continuous trajectories. Equations for the 
conditional reliability functions of an element, under 
assumptions that the failure rate is a special case of a 
semi-Markov process or a piecewise Markov process 
with a finite state space, was introduced by [9]. 
Kopocińska [10] has considered the reliability of an 
element with an alternating failure rate. For general 
semi-Markov process with the finite or countable 
state space, results from the papers mentioned above 
were generalized by [3]. The theorem deals with the 
Markov renewal equations for the conditional 
reliability function with a general semi-Markov 
failure rate process was proved by [5]. The solution 
of an introduced finite linear system of equations for 
the Laplace transforms allowed obtaining the 
reliability function for some interesting cases of the 
semi-Markov failure rate processes. 
We should mention that there are many other 
approaches for a concept of the failure rate. For 
example: Ouhbi and Limnios [13] define a failure 
rate function in the semi-Markov systems and they 
show its nonparametric estimation. Hassett, Dietrich 
and Szidarovsky [6] present the time-varying failure 
rates in the availability and reliability analysis of 
repairable systems, Tanguy C. [15] considers 
periodic failure rate. 

 

2. Essential concepts of a discrete states and 
continuous time Semi-Markov process theory 

The semi-Markov processes were introduced 
independently and almost simultaneously by Levy P., 
Smith W.L., and Takacs L. in 1954-55. The essential 
developments of the semi-Markov processes theory 
were proposed by [1], [2], [7], [12], [14].We will 
present only semi-Markov processes with a discrete 
state space. Usually a semi-Markov process are 
constructed by the so called Markov Renewal Chain 

},:,{ 0Nnnn ∈ϑξ  ,Sn ∈ξ  ),,0[ ∞∈ϑn  which is a 
special case of two-dimensional Markov sequence, 
such that the transition probabilities depend only on 
the discrete coordinate 
 
   ==ϑ=≤ϑ= ++ ),,( 11 nnnnn tiξ|tjξP  
 
   ),( 11 iξ|tjξP nnn =≤ϑ== ++  
 
and 
 
   ).()0,( 000 iξPiξP ===ϑ=  
 
The matrix 
 
   ],,:)([)( SjitQt ij ∈=Q  ,0≥t                              (1) 

 
where 
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   ),()( 11 iξ|tjξPtQ nnnij =≤ϑ== ++                      (2) 

 
is said to be the renewal kernel. Let 
 
   ,00 =τ  .,...: 1 nnτ ϑ++ϑ=                                    (3) 
 
The stochastic processes }0:)({ ≥ttv  given by 
 
   ntv =)( , for ),,[ 1+∈ nn ττt  .0Nn∈                      (4) 
 
is called counting process. The stochastic process 

}0:)({ ≥ttX , defined by the formula 
 

nξtX =)( , for ),,[ 1+∈ nn ττt .0Nn∈                       (5) 
 
is said to be the semi-Markov process given by the 
renewal kernel )(tQ . 

From the above definition it follows that the semi-
Markov processes keep constant values on the half-
intervals. From the definition of the semi-Markov 
process it follows that the sequence 

...},1,0:)({ =nτX n  is a homogeneous Markov chain 
with transition probabilities 
 
   ).(lim))()(( 1 tQiτX|jτXPp ij

t
nnij ∞→+ ====         (6) 

 
The function 
 

   .)())(()( 1 ∑
∈

+ ==≤−=
Sj

ijnnni tQiτX|tττPtG    (7) 

 
is a cumulative probability distribution of a random 
variable iT that is called a waiting time of the state i . 

The waiting time iT  is the time spent in state i  when 
the successor state is unknown. The function 
 
   ))(,)(()( 11 jτXiτX|tττPtF nnnnij ==≤−= ++    (8) 

 
is a cumulative probability distribution of a random 
variable ijT  that is called a holding time of a state i , 

if the next state is j . From (6) we have 
 
   ).()( tFptQ ijijij =                                               (9) 

 

From (9) it follows that a semi‐ Markov process 
with a discrete state space can be defined by the 
transition matrix of the embedded Markov chain 

],:[ Sjipij ∈=P  and a matrix of CDF of holding 

times ].,:)([)( SjitFt ij ∈=F  A semi-Markov process 

}0:)({ ≥ttX  is said to be regular if the 
corresponding counting process }0:)({ ≥ttv  has a 
finite number of jumps on a finite period with 
probability 1 
 
   .1))((

R
=∞<∀

+∈
tvP

t
                                           (10) 

 
Every semi-Markov process with a finite state space 
is regular [9]. 
 
3. Semi-Markov process as the failure rate 
 

We suppose that the failure rate, denoted by 
}0:)({ ≥ttλ  is a stochastic process with nonnegative 

and right continuous trajectories.  
An expectation 
 

   













∫−=
t

0

du)u(λexpE)t(R                                (11) 

 
is said to be  a reliability function corresponding to 
a random failure rate process }0:)({ ≥ttλ  From 
Fubini’s theorem and Jensen’s inequality we 
immediately get the following result. 
If 
 

   ∞<∫
t

duuλE
0

)]([                                                 (12) 

 
then 
 

   .)]([exp)(
0 











−≥ ∫

t

duuλEtR                                 (13) 

 
From above mentioned inequality it follows that the 
reliability function with the random failure rate 

}0:)({ ≥ttλ  is greater than or equal to the reliability 
function with the deterministic failure rate equal to 
the mean )]([)( uλEtλ = . 

We assume that the failure rate is semi‐ Markov 
process taking values on an at most countable state 
space },:{ JjλS j ∈=  where ...},2,1,0{⊂J  or 

}...,,2,1,0{ nJ =  (see e.g. [7], [12], [14]). 
A conditional expectation 
 

   













=












−= ∫ i

t

i λλduuλEtR )0(|)(exp)(
0

             (14) 
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is said to be a conditional reliability function 
corresponding to a random failure rate process 

}0:)({ ≥ttλ  if iλλ =)0( . 
 
Theorem 1. [3] 
If the failure rate function }0:)({ ≥ttλ  is a regular 
semi-Markov process on discrete state space 

},:{ JjλS j ∈=  with a kernel 

],,:)([)( JjitQt ij ∈=Q  then the conditional 

reliability functions )(tRi , Ji ∈ , satisfy the system 
of equations 
 

   
∫ ∑ ∈−+

−=

∈

−

−

t

ij
Jj

j
xλ

i
tλ

i

JixdQxtRe

tGetR

i

i

0

,),()(

))(1()(

       (15) 

 
where 
 

   .)()( ∑
∈

=
Jj

iji tQtG                                                (16) 

 
The solution is unique in class of the measurable and 
uniformly bounded functions. 
To solve that system of integral equation we will 
apply the Laplace transform. Let 
 

   ∫
∞

−=
0

,)()(
~

dttResR i
st

i  ∫
∞

−=
0

,)()(
~

dttGesG i
st

i  

 

   ∫
∞

−=
0

.)()(~ dttQesq ij
st

ij  

 
Passing in (to the Laplace transforms), we obtain the 
system of linear equations in matrix notation has a 
form 
 

   ),(
~

)(
~

))(~( sHsRsqI =− Λ                                     (17) 
 
where 
 
   ],:)(~[)(~ Jjiλsqsq iij ∈+=Λ  

 
is the square matrix and 
 

   ,]:)(
~

[ 'JisRi ∈  
 

   ,:)(
~1

)(
~

[
'

JiλsG
λs

sH ii
i









∈+−

+
=  

are one column matrices. 
 
4. The random walk process as the failure 
rate 
 

Let }0:)({ ≥ttλ  be a semi‐ Markov process with the 

state space },...,,{ 10 nλλλS=  and the kernel 
 
   ],,...,0,:)([)( njitQt ij ==Q                                (18) 

 
where 
 

   














=−=
==

−=+=
−=−=

=

.otherwise0

,1for)(

0,1for)(

1,...,1,1for)(

1,...,1,1for)(

)( 0

ninjtG

ijtG

niijtGb

niijtGa

tQ

n

ii

ii

ij  

 
The functions )(0 tG , )(1 tG , …, )(tGn  denote the 
cumulative distribution functions with a nonnegative 
support ),0[ ∞=+R  and ,0>ka  ,0>kb  ,1=+ kk ba  
for 1,...,1 −= nk . This stochastic process 

}0:)({ ≥ttλ  is called a semi‐ Markov random walk 

or the semi‐ Markov birth and death process. 

Suppose that the distributions )(0 tG , )(1 tG , …, 
)(tGn  are absolutely continuous with respect to the 

Lebesgue measure. Let ],...,,[ 10 nppp=p  be an 
initial probability distribution of the process. Now, 
the matrices from the equations (17) are 
 

   ,

1
~

000

~
1

~
00

00)(
~

1
~

000
~

1

)(~

1111

1111

0























=−

−−−−

Λ

n

nnnn

d

dbda

sdbda

d

sqI

L

L

MMMMMM

L

L

(19) 

 
where 
 

   ∫
∞

−=
0

),()(~ tdGesg i
st

i  ,,...,1,0 ni =  

 

   ),(~)(
~

iki λsgsd +=  ,,...,1,0 ni =  
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The Laplace transform of the unconditional 
reliability function is 
 

   ).(
~

...)(
~

)(
~

00 sRpsRps nn++=R                        (20) 
 
From (13) it follows that 
 

   ,)(exp)()(
0 











−=≥ ∫

t

duuλtRtR                          (21) 

 
where 
 

   ∑
=

==
n

k
kk tPλtEuλ

0

),()]([)( λ                                (22) 

 
   },)({)( kk λtλPtP ==  .0≥t                                 (23) 
 
Let 
 
   ),(lim tPP k

t
k ∞→

=  .Jk ∈                                          (24) 

 
As a conclusion from theorems presented by 
Koryoluk and Turbin [11], we obtain a formula 
 

   ,

0
∑

=

π

π=
n

i
ii

kk
k

m

m
P  ,,...,0 nk =                                  (25) 

 
where 
 

   ∫
∞

−=
0

,)](1[ dttGm kk  ,,...,0 nk =                         (26) 

 
is an expectation of a waiting time in state kλ  and 

the stationary probabilities kπ , ,,...,0 nk =  of the 

embedded Markov chain ,...}.1,0:)({ =τ nλ n  satisfy 
the linear system of equations 
 

   ,j
Si

iji p π=π∑
∈

 ,Sj ∈  1∑
∈

=π
Sj

j                           (27) 

 

where 
 
   =ijp ).(lim tQij

t ∞→
                                                  (28) 

 
The system of equation (27) takes of the form 
 

   

.1...10

11

23311

1220

011

=π++π+π
π=π

π=π+π
π=π+π
π=π

−−

n

nnnb

ab

a

a

MMM
                                       (29) 

 
It is easy to obtain a solution 
 

   0
10

110

...

...
π=π −

j

j
j aaa

bbb
   for ,,...,1 nj =                     (30) 

 
where  
 
   ,10 =b  .1=na                                                     (31) 
 

From a condition ∑
=

=π
n

j
j

0

1 we get 

 

   .1

1

0 1

1
0

−

= =

−













+=π ∑∏

n

j

j

k k

k

a

b
                                    (32) 

 
From (25) we obtain a limiting distribution of the 
semi-Markov random walk with a kernel matrix (18) 
 

   ,

1 0

1
0

0
0

∑ ∏
= =

−












+

=
n

j
j

j

k k

k m
a

b
m

m
P                               (33) 
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1 1

1
0

1

1

∑ ∏

∏

= =

−

=
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+

=
n

j
j

j

k k

k

j

j

k k

k

j

m
a

b
m

m
a

b

P  .,...,1 nj =  

 
Finally for large t we obtain an approximate lower 
bound for the reliability function 
 

   .exp)(exp)(
00









−≈












−≥ ∑∫

=

n

k
kk

t

tPλduuλtR        (34) 
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4.1. Alternating process as a failure rate 
 

An alternating process is a special case of a semi-
Markov random walk for .1=n  That kind of random 
process as a failure rate was discussed by 
Kopocińska [10]. Now, the failure rate is semi-
Markov process }0:)({ ≥ttλ  taking values in the 

states space },,{ 10 λλS=  defined by a kernel matrix 
 

   ,
0)(

)(0
)(

1

0








=

tG

tG
tQ                                           (35) 

 
and an initial distribution ].,[ 10 pp=p  Now, the 
matrices from equation  (17) take of the forms 
 

   ,
1)(~

)(~1
)(~

11

00









+−
+−

=− Λ
λsg

λsg
sqI  

 
where 
 

   ∫
∞

−=
0

),()(~ tdGesg i
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i  ,1,0=i  
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)(

~
)(

~
)(

~

1

0








=

sR
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)(
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)(
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)(
~
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1

00
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+
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λsG
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λsG
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A solution of those system of equation is 
 

   

,
)(~)(~1

)(
~1

)(~)(
~1

)(
~

1100

11
1

0000
0

0

λsgλsg

λsG
λs

λsgλsG
λs
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++−
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+
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+
=
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 (36) 

 

   

.
)(~)(~1

)(
~1

)(~)(
~1

)(
~

1100

00
0

1111
1

1

λsgλsg

λsG
λs

λsgλsG
λs

sR
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+−

+
+++−

+
=

=

(37) 

 
An unconditional reliability function is 
 

   ).(
~

)(
~

)(
~

1100 sRpsRpsR +=                                    (38) 
 
Example 1 
We assume that an initial distribution and a kernel of 
the process are  
 
   ],,[ 10 pp=p  

   ,
01

)1(10
)( 









−
+−= −

−

αt

βt

e

eβt
tQ  

 
   ,0>α  ,0>β  .0≥t  
 
The CDF of waiting times in the states 10, λλ  are 
 

   ,)1(1)(0
βteβttG −+−=  

 

   ,1)(1
αtetG −−=  .0≥t  

 
The corresponding Laplace transforms are 
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)(

)(
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2

2
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+
=  ,
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~
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2
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α
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+
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We calculate the conditional reliability function for 
the parameters 
 
   ,00 =λ  ,2.01 =λ  ,01.0=α  ,1.0=β  ,00 =p  .11 =p  
 
Substituting those functions into (37) we get 
 

   
.
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0001.0
1

)1.0(
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01.0
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1

)(
~

2

2

1
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+
−

+
+
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−

+
=

=
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Using MATHEMATICA computer system we obtain 
the reliability function as an inverse of the Laplace 
transform 
 

   
.0,245913.0

495913.025.1)(
0729844.0

137016.02.0
1

≥+
−=

−

−−

te

eetR
t

tt

 

 
The function )(1 tR , 0≥t  is equal to unconditional 

reliability function )(tR , 0≥t . A corresponding 
probability density function is 
 

   
.0,0179478.0

067948.025.0)(
0729844.0

137016.02.0

≥+
−=

−

−−

te

eetf
t

tt

 

 
5. Poisson process as the random failure rate 
 

For the Poisson process a following result is 
obtained. 
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Theorem 2. [3] 
If the random failure rate }0:)({ ≥ttλ  is the Poisson 
process with parameter ,0>λ  then the reliability 
function defined as 
 

   ,)(exp)(
0 

























−= ∫

t

duuλEtR  

 
is 
 
   ])].exp[1(exp[)( ttλtR −+−−=                          (39) 
 
Let us recall the well known property: if }0:)({ ≥ttλ  

is the Poisson process with the parameter ,0>λ  then 
 
   ,)]([ λttE =λ  .0≥t                                             (40) 
 
From inequality (13) we get 
 

   .
2

exp)()( 2





−=≥ t
λ

tRtR                                   (41) 

 
The reliability function (39) and the function (41) 
with 2.0=λ  are shown in Figure 1. 
 

R

R
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Figure 1. Reliability functions for the Poisson failure 
rate  process. 
 
The density function of the time to failure with the 
Poisson failure rate is 
 

   ).1()( )]1([ tetλ eλetf
t −+−− −=

−
                               (42) 

 
This density function with parameter 2.0=λ  is 
shown in Figure 2. 
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Figure2. Density function for the Poisson failure rate 
process 
 
The hazard rate function corresponding to the 
reliability function with the Poisson failure rate we 
can write as 
 

   ).1()( teλth −−=                                                 (43) 
 
Let us notice that .)(lim λth

t
=

∞→
 It means that for large 

t the reliability function (39) is approximately equal 
to the exponential reliability function. 
 
6. Furry-Yule process as the random failure 
rate 
 

Assume that the random failure rate }0:)({ ≥ttλ  is 
the Furry-Yule process. The Furry-Yule process with 
parameter 0>λ  is the semi-Markov process on the 
counting state space ...},,2,1,0{=S  defined by the 
initial distribution ,...]0,0,1[)0( =p  and the kernel 
 

   ,

)(0000
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000)(0

)(
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=
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L

L

L

L

tG
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tQ  (44) 

 
where 
 

   λti
i etG )1(1)( +−−= , ,0≥t  ....,1,0=i  

 
Theorem 3. [5] 
If the random failure rate }0:)({ ≥ttλ  is the Furry-
Yule process with parameter 0>λ , then the 
reliability function defined as 
 

   ,)(exp)(
0 

























−= ∫

t

duuλEtR  
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is 
 

   .
1

)1(
)(

)1( tλ

λt

λe

eλ
tR +−

−

+
+=                                             (45) 

 
Well known equalities for the differentiable 
reliability function come to conclusion: 
a density function ),(tf  ,0≥t  and a hazard rate 
function ),(th ,0≥t  corresponding to the reliability 
function (45) are 
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)1(

)1()1(
)(

2)1(

)1(

tλ

tλλt

λe

eeλλ
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Figure 3. Density function for the Furry- Yule failure 
rate process. 
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Figure 4. Hazard rate function for  the Furry-Yule 
failure rate process. 
 
Figure 3 shows the density function (46) for 2.0=λ  
and Figure 4 shows the corresponding hazard rate 
function . Let us notice that 0)0( =h  and 

.)(lim λth
t

=
∞→

 An expectation of the Furry‐ Yule 

failure rate process is a function 

.1)]([)( −== λtetEtλ λ  Hence the lower bound of 
the reliability function  (45) is 

   .)(
11

t
λ

e
λ

λt

etR
++−

=                                                 (48) 
 

R

R

0 2 4 6 8 10 12 14
t0.0

0.2

0.4

0.6

0.8

R�t�

 
 

Figure 5. Reliability function and its lower bound for 
the Furry-Yule failure rate process 
 
7. Conclusion 
 

The randomly changeable environmental conditions 
cause random load of an object and it implies the 
random failure rate of that one. For the reliability 
function defined by a random failure rate we 
obtained an interesting property: the reliability 
function with the random failure rate is greater than 
or equal to the reliability function with the 
deterministic failure rate equal to the mean of the 
corresponding random failure rate. A main discussed 
problem is the reliability function defined by the 
semi-Markov failure rate process. For the semi-
Markov failure rate we have derived equations that 
allow us to obtain the conditional reliability 
functions. Applying the Laplace transformation for 
the introduced system of the renewal equations for an 
at most countable states space, we have obtained the 
reliability function for the special cases of the semi-
Markov random walk, for the Poisson and Furry-
Yule processes as the failure rates. Moreover, we 
have derived the lower bounds for the considered 
reliability functions. It seems to be possible to extend 
presented results on the continuous time non-
homogeneous semi-Markov process. 
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