
Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 3, Number 2, 2012

 189

1. Introduction

Popularization of web-based information systems has
been significantly growing in recent years. With
growing number of Internet users, utilization of
services plays one of the main and significant role for
these users, as much for companies that implement
them. Within these last few years, big and small
companies that provide this kind of services have a
difficult task to do – fulfill still growing/increasing
user requirements/demands. From the user point of
view the web service has not only to provide its
functionality but could be justifiably trusted [1].
Therefore, there is a need to have a method for
predicting the behavior of a given system in case of
system configuration changes or changes in a client
number. Moreover, redeployment of service
components[3] is a common way of reaction to system
components failures. But these changes influence the
workload of the various servers. In a consequence
some of them are over-utilized and cannot handle all
the incoming requests, or handle them with an
unacceptable response delay. It is very difficult to
predict these side-effects.
Avizienis, Laprie and Randell [1] introduced the idea
of service dependability to provide a uniform
approach to analyzing all aspects of providing a
reliable service: hardware faults, software errors,
human mistakes and even deliberate user misbehavior.
Mentioned authors described [1] basic set of

dependability attributes: availability, reliability,
safety, confidentiality, integrity and maintainability.
This is a base of defining different dependability
metrics used in dependability analysis of computer
systems and networks.
In this paper, we focus on the availability aspects of
web systems. The system availability is usually
defined as the probability that the system is
operational (provides correct responses) at a specific
time.
It raises the question what does it mean that the
system is operational. The typical answer is the failure
analysis. It assumes, that a web application provides
no or wrong responses in case of a failure, and
therefore the system could be seen as non-operational.
The failure could be caused by various sources of
system faults [3]: transient and persistent hardware
faults, software bugs, human mistakes and
exploitation of software vulnerabilities. There are also
attacks on services, based on draining their limited
resources, e. g. DOS attacks. It was discussed by
authors in [11], [12] and therefore is out of scope of
this paper.
The other source of wrong or no answers is the
overload of a web service. In case of a large number
of clients web servers rejects some of requests.
Moreover, the long request processing time could be
seen as a wrong answer. It has been proven [7] that if
user will not receive answer for the service in less
than 10 seconds he/she will probably resign from

Walkowiak Tomasz
Wrocław University of Technology, Poland

Web server performance and availability model for simulation

Keywords

performance, availability, simulation, web system

Abstract

The paper presents an approach to modelling and simulation of web systems. The systems are being modelled
from the point of view of services realized by them. The formal model of a system, accompanied with a model
of a request realization is presented. The main aspect of the paper is a simulation model of client-server
interactions that adequately describes the relationship between the server response time, its availability and
resource utilization. The model was constructed based on the the results of multiple experiments presented in a
paper. Moreover, it was implemented in the simulation tool and its accuracy verified against testbed web
servers. Apache and IIS servers were analysed.

Walkowiak Tomasz
Web server performance and availability model for simulation

 190

active interaction with the service and will be
distracted by other ones.
Therefore, we would like to focus on the functional
aspects of availability. It requires a method that will
allow to predict if the web system (in case of a given
workload) will respond or not. Moreover performance
of the system, i.e. the response time needs to be
estimated.
One of the possible approaches to this problem is to
use simulation techniques [2]: to study what are the
possible effects of a change of system configuration.
There is a large number of computer network
simulations, like OPNET, QualNet, OMNeT++,
SSFNet/PRIME SSF[5], NS-2 or GTNetS. These
simulators can fairly well predict the network traffic.
What they lack is a comprehensive understanding of
the computational demands placed on the hosts, and
how it impacts the system performance. They are
useful to predict the network traffic, not the level of
service availability or the response time. Therefore,
the main goal of research presented in this paper is to
propose a simulation model of a web server that will
allow to predict the web service availability as well as
the response time.
The paper is organised as follows. First of all, the
model of a web system is presented. It is followed by
a rough description of simulation approach and the
used simulation framework. Next, results of various
tests of real web server are presented. These tests
aimed to develop a detail model of a web server
behaviour in case of a changing workload. The
resulting model is presented in section 5. This model
was implemented in the simulation tool and its
accuracy verified against a testbed system
configuration. Moreover, it takes into consideration
the identified resource consumption interactions
between two services co-allocated on one web server.

2. System model

The paper considers a very wide class of web based
information systems. In general some business
services are accessed by the user using web
interactions. The service responses are dynamically
computed by the service components, which also
interact with each other using the client-server
protocols.
The basis of operation of all the web based
applications could be seen as the interaction between a
client and a server. From the client point of view the
interaction is very simple, the web system responds to
a user request and that is all. However, the processing
of a single user request on a host requires not only
some calculations on this host but very often includes
a set of requests to another host or hosts. The requests
follow one by one and in most cases it is done in a
sequence, it does not require a parallel execution.

Therefore, a user request could be seen as a sequence
of requests, executions and responds. Such sequence
is called choreography.
We propose to model the web system as a 4-tuple[10]:

ConfTIBSClientWS ,,,=

Client – client model,
BS – business service, a finite set of service

 components,
TS – technical infrastructure,
Conf – information system configuration.

2.1. Business service model

Business service can be seen as a set of service
components (i.e. authentication, data base service,
web service, etc.) that are used to provide service in
accordance with business logic for this process.
A service component is a piece of software that is
entirely deployed on a single host. All of its
communication is done by exchange of messages with
end-users or other components, i.e. one component
requests a service from some other components and
uses their responses to produce its own results. In
turn, its response is sent either to the end-user or to yet
another component.
The overall description of the interaction between the
service components is determined by its
choreography. In complex systems this choreography
is described using either a dedicated language (e.g.,
BPEL, WS-CDL) or the UML sequence diagrams.
The service components generate demand on the
networking resources and on the computational power
of the hosts running the components. This demand
determines the timing characteristics of the system.

2.2. Technical infrastructure

The system consists of network interconnected hosts
with installed software responsible for providing web
service (technical services).
The main aspect of the network is the communication
time. To model it, we assumed, that the local network
throughout is high enough so there is no relation
between the number of requests being processed in the
system and the network delay. We think that this
assumption is acceptable since in almost all modern
information systems high speed local networks are
used. In a result, for a large number of web systems
(except media streaming ones) the local network
traffic influence on the whole system performance is
negligible.
However, some aspects of TCP/IP protocol, i.e. the
process of establishing the connection, have a big
influence on a time of rejecting the request in case of
an overloaded web server. So we have had to model it
(section 5.1).

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 3, Number 2, 2012

 191

The hosts are abstracted to represent the computing
resources provided to the service components (the
abstraction encompasses hardware, operating systems
and server software).
Technical services (i.e. Apache server, Tomcat,
Oracle database, etc.) are installed on a given host. Its
behaviour influenced the service performance and
availability. That’s why we have analysed behaviour
of the most common technical service: Apache server
(section 4) in details and built a simulation model
described in section 5.

2.3. System configuration

System configuration is determined by the
deployment of service components onto the hosts.
This is characterized by the subsets of services
deployed at each location. The deployment clearly
affects the system performance, as it changes the
communication and computational requirements
imposed on the infrastructure.

2.4. Client model

The client-server interaction model has to consider the
various tasks initiated by the user. In a typical web
application, these tasks can exercise the server
resources in a wildly varied manner: some will require
serving of static web pages, some will require server-
side computation, yet others will initiate database
transactions or access to remote web applications. A
common approach to traffic generation is based on
determining the proportion of the various tasks in a
typical server workload and then mixing the client
models representing these tasks in the same
proportion [6].

3. Simulation
Disregard to a simulation tool, they are based on two
core modules: models, which describe the system and
its common behaviour, and simulation engine that is
responsible for executing the simulation flow. The
most basic principle is that simulator takes simulation
scenarios and models to be driven by them as an input
and generates output files according to the given
specification.
The event-simulation program could be written in
general purpose programming language (like C++), in
fast prototyping environment (like Matlab) or special
purpose discrete-event simulation kernels. One of
such kernels, is the Scalable Simulation Framework
(SSF) [5] which is a used for SSFNet computer
network simulator.SSF is an object-oriented API - a
collection of class interfaces with prototype
implementations. It is available in C++ and Java. For
the purpose of simulating web system we have used
Parallel Real-time Immersive modeling Environment

(PRIME) [5] implementation of SSF due to much
better documentation then available for original SSF.
The main task of developed simulator is to calculate
the time of processing a user request.
The user request processing time is equal to time of
communication between hosts on which each tasks
from the choreography is placed and the time of
processing each request. Since we have assumed
negligible aspects of TCP/IP traffic, the network
transmission time could be modelled by independent
random values from some distribution.
The second element required to calculate time of
processing a user request - a processing time of each
server request is not so easy to be modeled. The
typical approach found in the literature is the queue
model which takes into consideration the processor,
hard disk and memory ([4], [8], [9]). The authors
proposed a simple time sharing model [11]. In this
paper we propose a more advance approach. First of
all, we look how real Apache server behaves –
performing a set of experiments. And finally we build
a simulation model, which was tested against real
system.

4. Request processing in Apache server
To model the request processing time let’s consider a
simple interactions in a real system. For this purpose,
we have set up a simple testbed, consisting of a virtual
machine running an Apache server. The server hosts a
PHP script application, on which we can accurately
regulate the processing time needed to produce a
result. This application is exposed to a stream of
requests, generated by a choice of client applications
(a Python script written by the authors, open source
traffic generators such as Funkload and jMeter). Full
control is maintained of the available processor
resources (via the virtualization hypervisor). This
ensures that the client software is not limited by
insufficient processing capabilities, while the server
resources are regulated to determine their impact.
It is important to remember that a client-server
interaction depends a lot on how the traffic is
generated by the client. The simplest approach is
adopted by the software used for server/service
benchmarking, i.e. to determine the performance of
computers used to run some web applications. In this
case, the server is bombarded with a stream of
requests, reflecting the statistics of the software usage.

Walkowiak Tomasz
Web server performance and availability model for simulation

 192

0 5 10 15 20 25 30 35 40 45 50
0

20

Number of clients per second [1/s]

R
es

po
ns

e
tim

e
[s

] a)

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Number of clients per second [1/s]

A
va

ila
bi

lit
y

b)

Figure 1. The performance of Apache server with
PHP script under varying rates of incoming client
requests: a) the response time, b) the availability

The important factor in this approach is the lack of
any feedback between the rate of requests and the
server response times. In other words, the client does
not wait for the server response, but proceeds to send
further requests even if a response is delayed or
missing.
Figure 1 shows the results of stress experiments
performed on the testbed application. It should be
noted that the system is characterized by two distinct
thresholds in the requests rate. Up to approximately 6
requests per second, the response time very slowly
increases with the rate of requests. This is the range,
where the server processing is not fully utilized: the
processor is mainly idle and handles requests
immediately on arrival. There is a gradual increase in
the response time due to the increased probability of
requests overlapping.
When the requests rate is higher than the
underutilization threshold, the processing power is
fully used up, the requests are queued and processed
concurrently. The increase in the response time is
caused by time sharing/queuing: it is proportional to
the number of handled requests and the time needed to
process a single one. This holds true, until the server
reaches the second threshold – overutilization.
Above the overutilization threshold the server is no
longer capable of handling the full stream of requests.
In consequence, some requests are timed-out or
rejected. Further increase in the request rate does not
increase the number of concurrently handled ones.
Thus, the response time remains almost constant. On
the other hand, the percentage of requests handled
incorrectly increases proportionately to the request
rate. This is illustrated in Figure 1 b).
To understand the apache server behavior more detail
tests with other type of clients were performed. Now,
the workload is characterized by the number of
concurrent clients, sending requests to the server.
Each client sends a requests to the server, then it waits
for the server to respond (waits for a correct or reject
response) and after sends a new request again. The
number of clients is kept constants, moreover the

server script answers with a time of processing on the
server side (time of a PHP script execution). It allows
to understand how long a request waits in a queue
before it is processed. And how long it is executed on
processor. Results are presented in Fig 2. Till
underutilization threshold the processing time increase
in a linear way. Looking at the dashed line, i.e. the
PHP script processing time, it could be noticed that
there is a limit (equal to MaxClients parameter of the
Apache server) of requests executed in separate
threads. As it is noticeable in Figure 2 b), above this
threshold requests start to be rejected. Thereafter,
increasing the number of clients (concurrent requests)
leads to a commensurate increase in the number of
request rejects (represented by the error responses).
For the purpose of correctly simulating this behavior,
it is not enough to know the thresholds of under- and
overutilization. It is also necessary to model the time
of error responses. In general this is very difficult
since there are different mechanisms coming into play
(time-outs, rejects triggered by hard-coded limits or
by computing exceptions).
Performed experiments show two types of error
responses. First type, with a discrete time of request
rejections, mainly equal to 21s, but some also equal to
3s and 9s. This type of failure responses is observed
when the server load only slightly exceeds the
overutilization threshold. Detail experiments showed
that it is connected with establishing of a TCP/IP
connection. It could be modelled as queuing the
requests for a fixed time-period and error-responding
thereafter.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

R
es

po
ns

e
tim

e
[s

]

0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

A
va

ila
bi

lit
y

Number of concurrent users

b)

a)

Figure 2. The performance of an apache server with
PHP script under varying number of concurrent
clients (waiting for service response before issuing
another request) : a) the total response (solid line) and
the PHP script execution time (the dashed line), b) the
availability

Second type of the error response occurs only in
situations of heavy server overutilization. The server

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 3, Number 2, 2012

 193

sends an unpredictable mix of error responses, some
of them practically with no delay, others after a fixed
delay time. In some cases the server becomes unstable
and does not respond at all to some requests.

5. Web server simulation model

5.1. Apache simulation model

The above experiments were a base for the apache
web server simulation model. The model consists of
the retransmission buffer, the FIFO style waiting
queue, the circular buffer and a set of processors.
The retransmission buffer models the process of
establishing TCP/IP connection by a client if a server
is not responding. As it was mentioned in the previous
section, the TCP/IP connections are established within
a discrete time delays: 0, 3, 9 or 21s. Therefore the
retransmission buffer delays a requests for 3s if the
server (a process waiting on a given port in a sense of
TCP/IP protocol) is overloaded. Next time, if the
server is still overloaded, the buffer delays the
requests for time 3 times longer. In case of a delay
that reaches 21s the request is rejected.
The waiting FIFO queue models requests waiting for
an execution inside Apache server. Whereas, the
circular buffer models the requests executed by
threads of an Apache server. It is achieved by
switching the processors between different threads.
Summarising, the behaviour of processing a request in
the apache server could be modelled as follows:

1. If the total number of processed requests is
larger than Nmax the request is rejected
within a few ms (a random value), otherwise
goes to step 2

2. If a number of requests in the waiting queue is
larger than its limit:

a. If the requests waits longer then 21s
the requests is rejected

b. In other case the requests waits 3s for
the first time, next time the delay is
multiplied by 3

3. Otherwise, the requests goes to a FIFO style
wait queue

4. If the time sharing circular buffer is not full
the request is removed from the end of the
waiting queue and moved to the circular
buffer

5. Each requests from the circular buffer has an
access to a processor (from the set of
available one) for a quant of time

6. The requests is finished (therefore removed
from the time sharing buffer) when the sum of
time quants is larger than the execution time
of a given request

Implementation of the above model allows to
calculate the processing time of each requests.

5.2.Time sharing

The step 5 and 6 of a request processing algorithm
described above allows to calculate the execution time
of each request. But it also allows to model the
processor sharing among different applications
running on the same server. So it automatically
models the case when several servers are placed on
the same host.
Generally speaking, the execution of each request
(process) occurs by time-division multiplexing. For a
case when only one task is executed on a given host
the processing time depends on the host performance
described by parameter performance(h) and execution
time parameter (et()) of a given request:

)(

)(
)(

heperformanc

requestet
requestpt =

.

The algorithm for more than one request being
executed at the same time is more complicated. It is
based on the idea of event-time and processed based
simulation implemented in SSF framework.
Let eτττ ,...,, 21 be a time moments when some
requests are starting or finishing execution on a host h.
Let),(τhnumber denotes a number of requests being
processed (requests in circular buffer) at time τ on
host h, and ncores a number of processor cores.
Therefore, the time when a request finishes its
execution has to fulfil a following rule:

()

()requestet

ncoreshnumber

heperformance

k
kk =−∑

=
−

2
1 /)(

)(ττ

.

Therefore, the overall processing time is equal to:

 1)(ττ −= eirequestpt
.

The main drawback of the above approach is the fact
that it generates large number of events when large
number of requests are being executed on a single
host at the same time. It is due to the fact, that each
new request changes the estimated time of finishing
for all requests being executed at this moment. It
could have been solved by withdrawing events
representing request finishing time in case when a
new request would have come meanwhile. But this is
impossible in case of used for implementation
simulation framework - SSF. So we have introduced a
heuristic algorithm [11], that prevents the generation

Walkowiak Tomasz
Web server performance and availability model for simulation

 194

of a new event if the previous one (for the same host)
was close enough (the time difference is smaller than
a threshold).

5.3.Time sharing versus a queue model

The described above time sharing algorithm models
the processing of a requests imitating the real
computer system behaviour.
A common and used for many years way to model
processing time in computer systems are queuing
models [4], [8], [9]. The main advantage of such
approach is the mathematical model of queuing
networks that allows the analytical analysis of systems
modelled in this way. But even in case of computer
simulation a queue is much easier to be implemented
and faster in processing simulation then described
above time sharing algorithm.
The authors decided not to use a queue model since
the results of such approach for different requests
(with different execution time) processed in parallel
will be different to achieved from real (time-sharing
based) web system. Let’s assume a simple example
with a queue of length 10 and 10 concurrent clients
bombarding the system. Let, nine clients execute a
task with execution time equal to 0.1s and the one
client with a 0.2 s task . For the queuing model the
processing time for all clients will be 1.1s, but for the
time sharing approach the first type of clients will be
processed in 1s where the second type with 2s.

5.4. Simulation and real Apache server

The main aim of the model described in 5.1 was to
model a real system. As an illustration of the model
correctness let’s consider the results of simulating the
client – server interactions for Apache server. The
results for concurrent clients are shown in Fig. 3. The
testbed was slightly different form that used in
previous experiments (Figure 1 and 2). We have
increased the MaxClients parameter of the Apache
server what resulted in longer response time in the
overutilization region.
The results are very accurate considering that we are
approximating the complex behaviour of a software
component with just a few parameters. The
parameters includes: the host performance, the request
execution time for a single request, the length of time
sharing buffer, the length of wait queue and maximum
number of processed requests (seems to be set to 1000
for most of web servers).

0 100 200 300 400 500 600 700
0

10

20

30

40

R
es

po
ns

e
tim

e
[s

]

0 100 200 300 400 500 600 700

0.4

0.6

0.8

1

A
va

ila
bi

lit
y

Number of concurrent clients

b)

a)

Real web server

Simulation

Figure 3. The performance of a real web server (solid
line) and simulated one (dashed line): a) the response
time, b) the availability

They could be easily obtained by a simple tests on a
real system (the host performance, the request
execution time for a single request) or from
configuration files of the Apache server (MaxClients
defines the length of the time sharing buffer).
Therefore, the simulation allows to analyse the
influence of computer performance on the service
availability and performance.

5.5.Virtual web servers

The common situation in case of web servers is to
have several virtual hosts on one web server. It allows
to have several services on one host. The web server
differentiate the service to be executed by the
destination address of the requests (DNS host address
and/or port number).
To extend the model presented in 5.1 for such case a
set of testbed experiments were performed as
presented in Figure 4.
The case discussed so far, i.e., response times
observed when the server does not compete for the
processor with any other servers, is presented for
reference in Figure 4a. The proportional changes in
the response time thresholds, caused by resource
sharing, are illustrated in Figure 4b and c (request
rates from the second service were equal to 5 and 10
per second respectively). When the background
service is over utilized, further increase in its loading
does not increase the demand for processor. Thus, the
model in Figure 4d (request rate 20 per second) is not
affected by it.

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 3, Number 2, 2012

 195

0 5 10 15
0

20

40

a)

R
es

po
ns

e
[s

]

0 5 10 15
0

20

40

b)

R
es

po
ns

e
[s

]

0 5 10 15
0

20

40

c)

R
es

po
ns

e
[s

]

0 5 10 15
0

20

40
d)

R
es

po
ns

e
[s

]

Rate of request generation [Hz]

Figure 4. The real web server response time under
varying rates of incoming client requests, with two
virtual servers. Wheras the second server: a) not
accessed, b) accessed with 5 requests/sec., c) 10
req./sec., d) 20 req./sec

This proportional sharing is a basis of the
implemented simulation model. We have added a
separate waiting queue and retransmission buffer for
each virtual server as presented in Fig. 5. The time
sharing buffer selects a request from each of waiting
queues in a proportional way.
To test the extended model correctness several
experiments were performed. Calculated by simulator
response times for co-allocated services (two web
services) under varying number concurrent client are
presented in Fig. 6. The simulation results differ nor
more than 20% from a real system. The difference
occurs for a huge number of concurrent clients – i.e.
other 500 from both services.

Client ...

Time sharing

Virtual Server 1

Queue

Processor

Processor

3 s Time sharing

Client ...

Virtual Server 2

Queue

3 s

Figure 5. The simulation model of processing a
request in case of two co-collocated services (two
virtual servers).

0 50 100 150 200 250 300 350 400 450 500
0

20

40

25

R
es

po
ns

e
[s

]

0 50 100 150 200 250 300 350 400 450 500
0

20

40

50

R
es

po
ns

e
[s

]

0 50 100 150 200 250 300 350 400 450 500
0

20

40

200

R
es

po
ns

e
[s

]
0 50 100 150 200 250 300 350 400 450 500

0

20

40

300

R
es

po
ns

e
[s

]
Number of concurrent clients

Figure 6. The simulatiion results for web server
response time under varying number concurrent client
with two virtual servers, where the number of clients
on second virtual server varies form 25 to 300

To a number concurrent of clients less than 500 is
smaller than 5%. The situation could be also seen in
Figure 3. It seems that the model underestimates the
request processing time for a large number of users.
Probably, there is the other phenomenon connected
with processing that large number of requests, mostly
rejected by the server. In case of availability the
results from simulation and reality differs less than
0.05. Summarising, we think that the results are very
accurate.

5.6. IIS web servers

We have also made tests with the IIS web server. As it
presented in Figure 7. the response time enlarged in a
linear way till some threshold and all requests above
this threshold are rejected immediately.
Therefore, the model of IIS server is much simpler
than for the Apache. There are no retransmission
buffer and no circular buffer. The IIS could be
modelled just only by one waiting queue. Due to a
simplicity of the model results of simulation are very
similar to a real system (in case of response time less
than 2%).
It has to be noticed that time sharing (circular buffer)
is required to model interaction between different
technical services placed on the same host. And
probably in a case of IIS virtual servers, but this has
not been yet verified by experiments.

Walkowiak Tomasz
Web server performance and availability model for simulation

 196

0 500 1000 1500
0

20

40

60
R

es
po

ns
e

tim
e

[s
]

0 500 1000 1500
0.4

0.6

0.8

1

A
va

ila
bi

lit
y

Number of concurrent clients

Figure 7. The performance of an IIS server with PHP
script under varying number of concurrent clients
(waiting for service response before issuing another
request) : a) the total response, b) the availability

6. Conclusion

Summarizing, we have presented a simulation model
that allows to predict the response time and
availability of a web server in case of a given flow of
user requests. The proposed model can be used to
simulate all the interactions between the service
components and to predict the results of any changes
in a system configuration or user behaviour. The
performance of this simulator is currently under study,
however the results are very promising as presented in
chapter 5.
We plan to extend the model for other components of
web system i.e. data bases and application servers
(Java EE one). Next, we plan to verify the simulator
results with a real web system consisting of several
interacting components.

Acknowledgment

The presented work was supported by the Polish
National Science Centre under grant no. N N516
475940.

References

[1] Avižienis, A., Laprie, J. & Randell, B. (2000).
Fundamental Concepts of Dependability. 3rd
Information Survivability Workshop (ISW-2000),
Boston, Massachusetts, USA.

[2] Birta, L. & Arbez, G. (2007). Modelling and
Simulation: Exploring Dynamic System Behaviour,
Springer London.

[3] Caban, D., Walkowiak, T. (2010). Dependability
oriented reconfiguration of SOA systems. In:
Grzech A (ed) Information systems architecture
and technology : networks and networks' services,
Oficyna Wydawnicza Politechniki Wrocławskiej,
Wroclaw, 15-25.

[4] Lavenberg, S.S. (1989). A perspective on
queueing models of computer performance.
Performance Evaluation, 10, Issue 1,53-76.

[5] Liu, J. (2006). Parallel Real-time Immersive
Modelling Environment (PRIME), Scalable
Simulation Framework (SSF), User’s manual,
Colorado School of Mines Department of
Mathematical and Computer Sciences. [Available
online: http://prime.mines.edu/].

[6] Lutteroth, Ch. & Weber, G. (2008). Modeling a
Realistic Workload for Performance Testing. Proc.
12th International IEEE Enterprise Distributed
Object Computing Conference, 149-158.

[7] Nielsen, J. (1994). Usability Engineering, Morgan
Kaufmann, San Francisco.

[8] Rahmawan, H. & Gondokaryono, Y.S. (2009).
The simulation of static load balancing algorithms.
International Conference on Electrical
Engineering and Informatics, ICEEI '09., Vol. 2,
640-645.

[9] Stallings, W. (2003). Computer Organization and
Architecture. Prentice Hall.

[10] Walkowiak, T. (2009). Information systems
performance analysis using task-level simulator.
DepCoS - RELCOMEX 2009, IEEE Computer
Society Press, 218−225.

[11] Walkowiak, T. (2011). Simulation approach to
Web system dependability analysis. Summer Safety
and Reliability Seminars, SSARS 2011, Vol. 1,
197-204.

[12] Walkowiak, T., Michalska, K. (2011). Functional
based reliability analysis of Web based
information systems. Dependable computer
systems / Wojciech Zamojski [ie tal.] (eds.).
Berlin; Heidelberg : Springer, cop. 2011, 257-269

