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1. Introduction 
  

Symmetric block ciphers, since proliferation of the 
DES algorithm in the 70. of the previous century, are 
the standard method of data protection that ensures 
safe and secure operation of contemporary IT 
systems. Today, after DES expiration due to 
insufficient cryptographic strength when compared 
to available processing power, its descendant – the 
AES algorithm – is the typical solution applied in 
this area. In this paper we discuss hardware 
implementations of the two best ciphers in the AES 
contest – the winner Rijndael and the Serpent – in 
low-cost, popular field-programmable gate arrays 
(FPGA). The text is organised as follows. The rest of 
this introductory chapter presents motivation of our 
specific implementation approach as well as the 
origin of the two algorithms which we have selected 
as the representatives of symmetric block ciphers 
applied in practice. Internal organisation of the two 
methods is briefly reminded in chapter 2 and then, in 
chapter 3, specific problems of their implementations 
in FPGA devices are described. Finally, chapter 4 
discusses hardware verification of the proposed 
solutions. 
 
 

1.1. Motivation of this work 
 

The AES standard is more than 10 years old now 
and, obviously, there is a vast knowledge of possible 
soft- and hardware implementations of the block 
ciphers proposed at the time of its development. 
Because realisation of the cipher transformations 
directly in hardware was one of the important options 
taken into account from the very beginning in the 
contest, there are numerous solutions described in the 
literature that implement the ciphers in both mask- 
(ASIC) and field-programmable gate arrays (FPGA). 
The essential initial evaluation was included in [5] 
while other examples can be found, for example, in 
[6]-[9], [12] and [14]-[17]. Most of the typical 
solutions are highly customized for specific device 
architectures and / or operating environments. Being 
created first of all for topmost performance, their 
excellent operational parameters were possible 
thanks to elaborate optimizations which often 
involved manual fine-tuning of mapping, layout or 
routing phases during FPGA implementation. Also 
hardware platforms for these projects demanded the 
fastest, largest and often most expensive chip 
families in the FPGA world. 
In this work we deliberately look from different point 
of view at the hardware implementation of the cipher 
unit. While the “top-notch specialization” approach 
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was natural in the early years of AES conception, 
today the situation has changed thanks to ever-
growing capacity of programmable devices and 
another course of action becomes more and more 
common. First of all, the cipher module often 
becomes just one of the elements in the system-on-
the chip implemented in a popular, often low-cost, 
hardware device. In designs of this kind it is not 
desirable, or even not possible, to make the cipher 
optimization the dominant aspect of the whole 
project. The module must share both resources and 
optimization effort appropriately with the rest of the 
system. Secondly, encoding / decoding throughput 
parameters do not need to reach multi-Gbps values in 
common equipment designed for personal use; 
numbers in the range of single Gbps are sufficient for 
popular transmission channels like High-Speed USB 
or consumer-grade mass-storage devices. In this 
situation not the performance of the unit (generally 
understood almost always as maximum data 
throughput) but its flexibility and fast, fully 
automatic implementation become highly valued 
features that facilitates installation of the cipher 
module in the whole design and, consequently, 
reduces time-to-market in device development. 
Hence the aim of this work is to investigate low-cost 
FPGA implementations of the two best ciphers that 
emerged as a result of the AES contest. Based on the 
original results that are presented here one can 
compare the potential of the two methods and 
evaluate expenses at which their superior efficiency 
can be achieved. In particular, the terms “popular-
grade” or “low-cost” that we refer to in the title and 
in the text are understood as follows: 1) the 
programmable device used for implementation is 
chosen from inexpensive, popular and commonly 
used line of FPGA chips, widely available on the 
market; 2) the design is described in hardware 
description language on the relatively high level of 
abstraction (no less than at Register Transfer Level, 
RTL) and then synthesized and implemented fully 
automatically by standard software provided by the 
chip manufacturer, without any special “handmade” 
optimization, neither in layout nor routing. 
 
1.2. Origin of Rijndael (AES) and serpent 
 

The Data Encryption Standard (DES), developed by 
IBM and standardized by US National Institute of 
Standards and Technology (NIST) in 1977, had been 
internationally used as the best encryption method 
until the mid-1990s when its strength was seriously 
questioned by successful attacks. Due to relatively 
short length of the DES key (56 bits) it became 
possible to complete brute-force exhaustive search of 
the entire key space in more and more acceptable 
times using specialized hardware platforms and / or 

distributed computing. Facing an imminent demise 
of DES, in January 1997 NIST issued a first call for 
a successor algorithm, to be called an Advanced 
Encryption Standard, or AES. 
The request called for unclassified, publicly 
disclosed encryption algorithm, available royalty-
free, worldwide. In response total of 15 new ciphers 
were submitted from several countries. After two 
conferences organized by NIST to promote public 
examination of the proposals (AES1, August 1998 
and AES2, March 1999) the five finalists were 
announced in August 1999. Their AES2 votes were 
as follows: 
- Rijndael: 86 positive, 10 negative 
- Serpent: 59 positive, 7 negative 
- Twofish: 31 positive, 21 negative 
- RC6: 23 positive, 37 negative 
- MARS: 13 positive, 83 negative 
During the last AES3 conference in April 2000 the 
authors had the last chance to present their proposals 
and then in October 2000 NIST announced the final 
decision which was consistent with the AES2 voting: 
the winner was Rijndael cipher. Under the new name 
of AES it was announced the U.S. Federal 
Information Processing Standard 197 (FIPS 197) in 
November 2001 ([10]).  
 
2. The algorithms 
 

Both algorithms – the AES and the Serpent – are 
symmetric block ciphers that are examples of 
substitution-permutation networks (SPN). Their 
processing consists in a sequence of rounds, with 
every round being a specific set of elementary 
operations executed repeatedly over a given block of 
data. Independently from cipher (data) path there is 
a separate processing whose task is to provide every 
round with its individual round key, generated from 
user-supplied secret external key. 
In the following presentation of the two ciphers we 
will use unified symbols which in some cases will be 
different from official nomenclature used in 
specifications submitted by the authors. 
 
2.1. The AES (Rijnadael) 
 

The AES cipher was initially developed by two 
Belgian cryptographers, Joan Daemen and Vincent 
Rijmen, and submitted to the AES contest under the 
name “Rijndael”. The approved final standard is 
publicly available as a FIPS publication in [10] and, 
strictly speaking, is a subset of Rijndael with fixed 
block size of 128b(it) and allowed key sizes of 128, 
192 or 256b (the original method accepts block and 
key sizes equal to any multiply of 32b from 128 to 
256). In discussion of this paper we consider 
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exclusively the AES-128 version, i.e. we assume size 
of the key to be 128b. 
In AES the 128b data block is considered to be 
a 4×4B(yte) array, termed the State. For 128b key, 
the whole encryption procedure is divided into 
exactly 10 rounds after one auxiliary round executed 
at the beginning of the process. During encryption 
every round consists of four elementary state 
transformations executed in specific order: byte 
substitution (SBox), row shifting (SR), column mixing 
(MC) and addition of a round key (bitwise XOR 
operation, denoted with the ‘⊕’ symbol). The two 
exceptions are the initial round (numbered as 0) that 
consists only of addition of the external user key and 
the last one (number 10) that does not perform 
column mixing.  
Let P be a 128b plaintext (input), Bi – a state block 
that enters the i-th round Ri, K – external user key, Ki 
– the key generated for round i, and C – encoded 
ciphertext (output). The complete data path of the 
AES can be expressed with the following equations: 
 
   B1 := P ⊕ K 
 
   Bi+1 := MC( SR( SBox( Bi ) ) ) ⊕ Ki,   i = 1 … 9 (1) 
 
   C := SR( SBox ( B10 ) ) ⊕ K10 
 
As it was mentioned before, rounds 1-10 use 
extended keys that needs to be generated from the 
main key by a separate so called key expansion 
routine. These computations, in turn, operate on 32b 
words wi, i = 0..43, which, upon elaboration, are 
directly copied to the round keys Ki. Initially, the 
first four words are filled with bits from the user key: 
 
   { w0, w1, w2, w3} := K (2) 
 
and then, for i = 1..10, every group of four words that 
creates round key Ki is computed as follows: 
 
   w4i := SBox( w4i-1 <<< 8 ) ⊕ Rcon[ i ] ⊕ w4i-4 

 
   w4i+1 := w4i ⊕ w4i-3 

 
   w4i+2 := w4i+1 ⊕ w4i-2 (3) 
 
   w4i+3 := w4i+2 ⊕ w4i-1 

 
   Ki := {w4i, w4i+1, w4i+2, w4i+3 } 
 
where <<< denotes left rotation (always by 8 bits, in 
this case), the SBox transformation uses exactly the 
same substitution boxes as the cipher path, and the 

Rcon is a vector of ten 32b constants statically 
defined in the standard. 
 
2.2. The serpent 
 

Serpent ([1]-[3]) was developed by Ross Anderson 
(University of Cambridge Computer Laboratory), Eli 
Biham (Technion Israeli Institute of Technology), 
and Lars Knudsen (University of Bergen, Norway). 
In the version that was submitted for AES contest the 
method operates on 128b data blocks and requires 
256 bit external key. The transformation flow is 
divided into 32 rounds (numbered 0-31) repeated 
over the data block with each round consisting of 
(nearly identical) sequence of elementary operations. 
As in the AES, each of the first 31 rounds requires 
separate 128-bit round key while the last round needs 
two keys; therefore, total of 33 round keys must be 
generated by a processing path called in this case key 
schedule. 
Before the plaintext block enters the procedure 
a special bit reordering – so called initial 
permutation IP – is performed. The plaintext P after 
permutation gives block B0, which is the input to the 
first round. At the end of the round chain, the output 
of the  last round, B32, undergoes the final 
permutation FP (which is an inverse of IP) giving 
the ciphertext C.  
As the first transformation in each round the block Bi 
is XOR-ed with the round key Ki and then the 
resulting vector is passed through substitution boxes. 
The algorithm defines 8 different S-Boxes numbered 
0 … 7 with each round Ri using S-Box number i mod 
8. Subsequently, the vector created by S-Boxes 
undergoes linear transformation LT giving block Bi+1 
that is the input to the next round. In the last round 
R31 the linear transformation is replaced with XOR 
operation with K32 and therefore two keys are 
required in this round. The complete data path can be 
formally described as: 
 
   B0 := IP( P ) 
 
   Bi+1 := LT( SBoxi mod 8( Bi ⊕ Ki ) ),  i = 0 … 30 (4) 
 
   B32 := SBox7( B31 ⊕ K31 ) ⊕ K32 

 
   C := FP( B32 ) 
 
Operation of the key schedule is no less involved. 
First, a set of 32-bit prekeys wi is created: the 
external key K is copied to the first ones numbered 
from –1 to –8 
 
   {w–1, w–2, … w–8} := K (5) 
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and then another 132 prekeys w0…w131 are generated 
by the following affine recurrence: 
 
   wi := ( wi–1 ⊕ wi–3 ⊕ wi–5 ⊕  (6) 
 
   wi–8 ⊕ φ ⊕ i ) <<< 11 
 
where φ symbol stands for the fractional part of the 
golden ratio value ( ) 215 +  (32-bit vector 
0x9E3779B9 in hexadecimal notation). Having the 
prekeys, the round keys are calculated using the 
same set of 8 substitution boxes that are used in the 
cipher path. The rule is that key Ki is computed from 
a group of four prekeys w4i, w4i+1, w4i+2 and w4i+3 
using S-boxes number (3 – i) mod 8: 
 
   K0 := IP( SBox3( w0, w1, w2, w3 ) ) 
 
   K1 := IP( SBox2( w4, w5, w6, w7 ) ) 
 
   K2 := IP( SBox1( w8, w9, w10, w11 ) )  (7) 
         … 
   K32 := IP( SBox3( w128, w129, w130, w131 ) ) 
 
3.  Specifics of FPGA implementation 
  

For both algorithms, relative simplicity of 
elementary operations as well as regular sequential 
structure of round series lead to effective 
implementation in both software and hardware, but 
some specific aspects of FPGA architecture do 
differentiate particular results. In brief discussion 
that follows we will see these problems in the 
context of popular-grade device families from Xilinx 
that were chosen for case studies of this work: 
Spartan-3 ([18]) and Spartan-6 ([19]). We will 
concentrate on the three aspects: programmable 
resources available in the selected devices (section 
3.1), their use for realisation of the cipher 
transformations (section 3.2) and overall 
organization of cipher processing – i.e., the 
architecture of the unit (section 3.3). 
 
3.1. Programmable resources 
 

For simplified structure of the logic cell in the two 
Xilinx families please see Figure 1. In all FPGA 
devices from this producer, so called Look-Up Table 
(LUT) is the element located in every logic cell 
which is provided for generation of any 
combinational function. A single LUT is a ROM 
table filled with zeroes and ones during configuration 
according to the function which should be computed 
at its output. In case of Spartan-3 devices, the LUTs 
are 4-input tables holding 16b each thus they can 
generate any function of maximum 4 variables. 

A function of fever variables still must occupy one 
LUT while any wider function will use more of them 
(5-input function = 32b or 2 LUTs, 6-input function 
= 64b or 4 LUTs, etc.). In Spartan-6 architecture, in 
turn, every LUT table has the total capacity of 64b 
being sufficient for generation of a 6-input Boolean 
function but, alternatively, can be configured for 
generation of two different 5-input functions of the 
same variables. These configuration nuances will 
have significant impact on implementation of the 
cipher transformations. 

 

LUT5 

LUT5 

A[5:1]

A[6]
LUT6 

LUT4 A[4:1]

Spartan-3: 

Spartan-6: 

 
 

Figure 1. Simplified structure of the logic cell in 
Spartan-3 and Spartan-6 architectures 
 
The signal which goes out of the LUT can be 
optionally stored in the flip-flop so virtually every 
signal generated in the array can be easily 
synchronously registered: introducing some amount 
of flip-flops into the FPGA project, like it is in 
pipelined designs, usually can be accomplished at 
very little additional cost. 
 
3.2. Implementing elementary operations 
 

Looking at equations (1) and (4) it can be seen that 
both algorithms – AES and Serpent – share very 
similar set of elementary transformations: (A) key 
addition, (B) a linear transformation  (which is called 
“column mixing” in the AES terminology), and 
(C) bit substitution serving as a non-linear 
transformation. Generation of the round keys defined 
in equations (3) and (6)-(7) does not add any new 
kind of operations to this list. 
From our discussion we will deliberately exclude any 
bitwise shift transformations, i.e. the elementary 
operation SR of the AES in equation (1) and vector 
rotations found in (3) and (6). Although in software 
implementation these would require due amount of 
processor cycles for byte transfers, in hardware, 
since no data is modified, they are just static bit 
permutations that are accomplished completely in 
routing and do not absorb any logic resources. 
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(A) Key addition. The first operation on the list is the 
simplest one conceptually: 128 bits of the data block 
are bitwise XOR-ed with suitable round key. From 
hardware point of view, this creates a set of 128 2-
input functions which, without optimization, would 
require 128 LUT elements in Saprtan-3 or, thanks to 
possible generation of two functions in a single LUT, 
64 elements in Spartan-6. In any case, since the 
functions are of only two variables, these would not 
be used to their full potential and only the 
optimization procedures of the implementation tool 
can improve this by fitting in the LUT the XOR 
function merged with some another transformation 
adjacent in the processing chain. Such merging was 
not explicitly defined in the VHDL code in the 
projects discussed later in this work, though. 

(B) Linear transformation. Compared to the previous 
operation, this transformation is much more complex 
for realisation. Leaving behind its cryptographic 
merit, at the binary level it can be expressed as 
a matrix multiplication where each output byte is 
computed through series of sum mod 2 and shift 
operations that, down to the strictly hardware point 
of view, make up a combinational circuit. In 
hardware, every output bit of the MC / LT module is 
computed as some particular function that reads 3 to 
7 bits from the input and passes them through a net 
of XOR gates. The resulting gate network in 
hardware is highly irregular and its implementation 
with LUTs, as well as its later optimization, is 
a major challenge for implementation tool. Along 
with the aim of this work, this task was left for fully 
automatic operation of the implementation software 
and no handmade optimization was applied in the 
VHDL code. 

(C) Non-linear transformation. Operation of this 
kind is present in both ciphers and, putting aside its 
mathematical background again, in both cases it 
takes the form of statically defined transcoding table: 
8b→8b in AES and 4b→4b in Serpent. The 
substitution operates independently on 8 / 4b parts of 
the data block and if this is to be executed in parallel 
on the whole vector (a principal option to choose 
when striving for high throughput) then 16 (AES) / 
32 (Serpent) transcoding modules of appropriate type 
need to be placed one by one. In hardware, such 
transcoding is an 8- / 4-input combinational function 
that can be implemented either as a network of logic 
gates or as a 256×8 / 16×4 ROM lookup table. The 
latter method usually leads to more effective 
implementation, especially in FPGA arrays, where 8-
input Boolean functions are considered wide and 
resources for their implementation are limited. 
A ROM block in FPGA architecture, in turn, can be 
implemented either as a distributed memory module 

composed of elementary LUTs or its contents can be 
stored in one of Block RAM modules (BRAM) 
available on-chip next to the FPGA array as an 
additional resource. 
In case of the AES, in Spartan-3 device a distributed 
ROM storing one 8b-wide SBox would take 256 × 8 / 
16 = 128 LUT elements + additional logic for 
address decoding, or 256 × 8 / 64 = 16 LUTs in 
Spartan-6 array. Multiplying these numbers by 16 
(all data block transcoded in parallel) we reach total 
of 2048 (Spartan-3) or 256 (Spartan-6) LUTs for 
representation of SBox operation in a single round. 
For Spartan-3 devices this can be a significant 
amount especially when such module is replicated 
for each round (×10) as it is in some architectures. 
On the other hand, BRAMs are 16kb in size in both 
families and can be configured as 2k × 8. This 
amount of memory is more than enough for two 
independent S-boxes that can operate in one block 
using its dual-port feature (even then only 25% of 
total capacity is used). Hence minimum of 8 BRAMs 
per round is needed for AES SBox operation if all 
State bytes are to be transcoded in parallel. 
In Serpent the substitution is defined for data chunks 
two times smaller and parallel processing of the 
whole data block needs 128b / 4b = 32 modules. The 
observations made above for AES regarding different 
implementation options are still valid but the 
numbers are different: every Serpent SBox 
implemented as a 16×4 distributed ROM would need 
just 4 LUTs in Spartan-3 or 2 LUTs in Spartan-6, 
giving total of 128 or 64 LUTs per round. The 
difference as compared to the AES is especially 
outstanding for the Spartan-3 family: implementing 
the AES on this platform with Sboxes stored in 
distributed memory is very costly and if all rounds 
are to be repeated in hardware, as they are, for 
example, in pipelined architectures of the whole 
cipher unit, then only the biggest devices are large 
enough to accommodate the required number of 
elements for this transformation alone. On the 
Spartan-6 platform this disparity is much smaller and 
the lower number of AES rounds (10 vs. 32) can 
compensate for it completely. 
Using the block RAM for Serpent SBoxes is not 
a good option: in its case substitution needs 32 boxes 
per round so 16 block RAMs would be needed but 
with utilization of only 1/512 of their capacity. 
Moreover, all 32 rounds repeated in hardware would 
take 16 × 32 = 512 blocks – an unreasonably high 
occupancy compared to its effective results. 
In case of the AES, apart from resource utilization 
the important difference between distributed vs. 
block RAM lies in operation mode: reading the 
distributed ROM in LUTs is purely asynchronous 
(memory contents is present at the data outputs only 
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after small combinatorial delay after the new read 
address has been established) while read operation of 
the BRAM must be synchronous (to read the 
memory contents after address is set one clock edge 
is required). Therefore when strictly combinatorial 
(asynchronous) operation of SBox transformation is 
required the LUT-based distributed memory has no 
alternatives in Xilinx devices. 
 
3.3. Architectures of the cipher units 
 

Both AES and Serpent implementations can be based 
on various hardware processing schemes thanks to 
regular structure of their data processing where 
a series of (nearly) identical rounds repeatedly 
transforms the same block of data. In a set of case 
studies investigated in this work all standard kinds of 
processing – combinational, pipelined and iterative – 
were applied in the VHDL language and then 
implemented in two specific FPGA devices. Their 
exhaustive discussion was not possible in this paper 
due to its size limit and can be found in papers [14] 
and [16]. In total, four kinds of typical architectures 
were devised and they were applied for the two 
ciphers as closely as possible. 

(A) Combinational architecture. In this organization 
structure of the hardware simply reflects flow of the 
data that is being encoded. All rounds of the cipher 
(11 for AES and 32 for Serpent) are implemented as 
separate hardware modules that create a continuous 
combinational path from the input to the output 
registers. In-between, the unit operates as 
a combinational function that maps 256 input bits 
(data + key) into 128 output bits (ciphertext). The 
two designs were specified by expressing as closely 
as possible the original cipher specification in the 
VHDL language using strict RTL style. Substitution 
boxes, both 8b (AES) and 4b (Serpent), were defined 
according to general Xilinx templates recommended 
for ROM specification. The cascade of the modules 
that implement individual cipher rounds was easily 
constructed with a single for...generate 
statement which greatly improved conciseness and 
clarity of description. 

(B) Cipher-only (half) pipelined architecture. 
The general idea of pipelining is to introduce evenly 
spaced registers along the combinational path so that 
in its synchronized operation multiple blocks of data 
are processed simultaneously during every clock 
cycle. Taking the combinational architectures of both 
ciphers as the starting designs for pipelining, the 
natural points of placing the pipeline registers are the 
signals Bi that cross boundaries of cipher rounds; this 
transforms each round into one pipeline stage (so 
called complete outer loop unrolling) and yields 11 
pipeline stages for AES and 32 for Serpent. In this 

architecture the key generation path remains 
combinational and this fact slows down changes of 
the external key during operation of the unit: loading 
a new key input invalidates the pipeline contents for 
11 or 32 clock ticks until new data fill all the cipher 
stages. This drawback may exclude this architecture 
from environments with frequent key changes but if 
it can be assumed that the key remains constant most 
of the time this is the optimal organization in terms 
of both speed and size. 

(C) Fully pipelined architecture. In this organization 
the key generation path was pipelined in an 
equivalent way as the cipher one so that the key 
generator provides the cipher stage with relevant key 
together with data (i.e. the key must be computed 
one clock cycle before the data). There was no 
problem with such organisation in the AES unit: 
since in the first pipeline stage R0 uses external (user) 
key, its special preparation is not required. Instead, 
during the first clock cycle when block  B1 is 
computed, the K1 key is prepared simultaneously so 
that it is ready for the round R1 in the next cycle. The 
total number of pipeline stages did not change. 
In Serpent, three issues complicated an equivalent 
solution. Firstly, computation of Ki depends on 
prekeys wi from two previous stages so additional 
registers are required for storing previous values of 
wi and feeding them two stages down the pipeline 
must be implemented in the routing. Secondly, the 
last cipher round needs two keys, so it must be split 
into two stages: the first one contains key mixing 
with bit substitution and the second one performs 
final key mixing only. Such splitting increased the 
total latency of the unit to 33 clock cycles but, 
compared to the only alternative solution with 32 
stages but with computation of K31 and K32 in one 
clock cycle, the shorter clock period compensates 
this increase more than adequately. Finally, the first 
Serpent round does not use unmodified external key; 
instead, K0 must be computed in a regular way as any 
other key and during that the data in cipher path must 
wait going through a dummy (empty) stage 
introduced right at the beginning of the pipeline. This 
adds extra 128 flip-flops (negligible compared to the 
total resource consumption) but also, which is more 
undesirable, extends the pipeline length to 34. For 
more detailed discussion about inconveniencies of 
pipelining in the Serpent algorithm together with 
evaluation of possible intermediate solutions please 
refer to [14]. 

(D) Iterative architecture. The iterative architectures 
investigated for both ciphers were based on one 
round taken from the fully pipelined organizations. 
Such a round was supplemented with necessary 
multiplexing logic (loading the data in – looping 
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back – loading the data out) and a simple controller 
responsible for counting the repetitions of the loop 
(round number) and supervising the multiplexers. 
The controller, in its minimal form, comprised 
a single “idle/busy” register and a round counter. In 
both architectures number of clock cycles required 
for encoding one block of data was identical to the 
number of pipeline stages in fully pipelined 
implementations. Again, some additional 
complications arose in Serpent module. While in the 
AES just one SBox transformation is used in all 
rounds, the Serpent defines 8 different SBoxes. This 
meant that some single “universal” SBox had to be 
created with the contents of all 8 SBox’es and an 
extra 3b input for selection signal, making its 
implementation with FPGA resources notably more 
complicated. For this reason one-round iterative 
architecture usually is not recommended for Serpent; 
instead, typically 8 rounds are implemented in 
hardware with the data block looped back 4 times 
(iteration scheme 8 × 4 instead of 32 × 1). 
Nevertheless, such organization was not chosen in 
this study for consistency of the results. 
 
4. Implementations 
  

All the 4 above architectures were implemented in 
Spartan-6 and, for comparison, in the previous 
family of Spartan-3 devices from Xilinx. From 
Spartan-6 family a middle-sized chip XC6SLX75 
was selected as a representative test platform and it 
served this role very well. The initial plan was to use 
Spartan-3E sub family as a comparable alternative, 

but because it soon turned out that even the largest 
chip – XC3S1600E – was too small for 
combinational and pipelined AES designs, it was 
decided to revert to, nowadays somewhat obsolete, 
initial Spartan-3 family, and to select the XC3S2000 
device. 
Initially there were 8 designs (4 for each cipher) and 
their code was implemented in Xilinx ISE Design 
Suite version 13.4, twice for the two different target 
devices. It turned out that the software can optionally 
implement the two pipelined architectures of the 
AES with or without utilization of block RAM 
resources, so this led to the final total of 10 different 
cases. For other architectures, enabling the use of 
block RAM did not change the implementation 
results since the software did not decide to use it 
even though the VHDL code did include templates of 
ROM definitions (for SBox specification) and they 
were properly detected in reports of the synthesis 
tool. 
Parameters of the 10 implementations related to their 
size and performance are included in Table 1 and 
they confirm particular strengths of specific 
organizations: the combinational architectures leads 
to the shortest possible latency, pipelining is the best 
way to maximize raw throughput, and the iterative 
units are optimal if smallest possible resource 
utilization, at the cost of low performance, is needed. 
Evaluating utilization of block RAM for the two 
pipelined architectures of the AES, in  Spartan-6 it 
resulted in remarkable savings in other resources 
(slices, registers and LUTs) which utilization 

Table 1. The proposed architectures implemented in Spartan-6 (upper values) and Spartan-3 (lower values) 
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93296 256 1536 256 2944 1664 817 256 4224 16768 806 
Registers 

40960 271 5061 2771 3913 3913 781 256 4224 16768 783 
46648 8997 9087 3946 8884 3376 1367 16888 15523 22029 1566 

LUTs 
40960 34566 30426 25328 29976 24583 7986 18939 22708 26876 3995 

RAMB8s 344   80  86      
RAMB16 40   20  20      

 24.4 195 154 215 168 160 7.95 196 169 180 
Fmax[MHz] 

 11.8 83.5 77.0 106 101 77.0 6.35 143 125 96.2 
 1 11 11 11 11 11 1 32 34 34 

Latency [TCLK] 
 1 11 11 11 11 11 1 32 34 34 
 41.0 56.4 71.2 51.2 65.6 68.9 126 163 202 189 

Latency [ns] 
 84.8 132 143 104 109 143 158 224 272 353 
 3.05 24.4 19.3 26.8 20.9 1.81 0.99 24.5 21.1 0.66 

Throughput [Gbps] 
 1.47 10.4 9.62 13.2 12.6 0.88 0.79 17.9 15.6 0.35 

 

 



Sugier Jarosław 
Symmetric block ciphers implemented in popular-grade FPGA devices 

 

 186

dropped roughly by half, but the performance was 
also affected although not so evidently (approx. 20% 
drop in the throughput). On Spartan-3 platform, on 
the other hand, the difference was not so apparent. 
What can be also analysed is the difference in 
effectiveness of cipher implementations with the two 
tested device families. The general observation is 
that, putting aside size parameters which are difficult 
to compare between different architectures, it was the 
performance of the AES which benefited more from 
moving to the new family: on average the throughput 
increased by 100% while for Serpent the increase 
was around 20%. As it was discussed in section 3, 
the new capabilities of LUT elements in Spartan-6 
are beneficial for implementation of the AES 
transformations, while in case of the Serpent they 
offer very little improvement over Spartan-3. 
 
5. Conclusions 
  

It is often said that the AES is faster but the Serpent, 
having more rounds, is more secure. This paper 
demonstrates this rule in the context of 
implementations which use popular-grade FPGA 
devices. With the previous generation of Spartan 
chips this principle was affected by the problems 
with AES implementation: its wide, 8 bit substitution 
boxes led to very high resource occupation and the 
Serpent attained additional advantage. The situation 
has changed with the new generation of Spartan 
devices form Xilinx: extended capabilities of LUT 
elements fit very well the needs of AES 
transformations whereas they bring little progress for 
the Serpent. The advantage of the latter cipher again 
remains mainly in better cryptographic strength. 
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