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1. Introduction 

Currently, the newest trends in the safety 
investigations of complex technical systems analysis 
are directed to the critical infrastructures. In general, 
a critical infrastructure is a single complex system of 
large scale or a network of complex large systems 
(set of hard or soft structures) that function 
collaboratively and synergistically in order to ensure 
to a continuous production flow of essentials goods 
and services. These are complex systems that 
significant features are inside-system dependencies 
and outside-system dependencies, that in the case of 
damage have significantly destructive influence on 
the health, safety and security, economics and social 
conditions of large human communities and territory 
areas. These systems are made of large number of 
interacting components and even small perturbations 
can trigger large scale consequences in critical 
infrastructures that may cause multiple treats in 
human life and activity. For the above reason, as an 
extended failure within one of these infrastructures 
may result in the critical incapacity or destruction 
and can significantly damage many aspects of human 
life and further cascading across the critical 
infrastructure boundaries, they have the potential for 
multi-infrastructural collapse with unprecedented and 
transnational dangerous consequences. 
Many technical systems belong to the class of 
complex critical infrastructure systems as a result of 
the large number of interacting components and 
subsystems they are built of and their complicated 

operating processes having significant influence on 
their safety. This complexity and the inside-
infrastructure and outside-infrastructure 
dependencies and hazards cause that there is a need 
to develop new comprehensive approaches and 
general methods of analysis, identification, 
prediction, improvement and optimization for these 
complex system safety. We meet complex critical 
infrastructure systems, for instance, in piping 
transportation of water, gas, oil and various chemical 
substances, in port and maritime transportation. 
Optimization of the structures, operation processes 
and maintenance strategies of critical infrastructures 
with respect to their safety and costs is very 
important and very often also complicated and often 
not possible to perform by practitioners because of 
the mathematical complexity of the applied methods. 
In addition, analyzing the critical infrastructures at 
their variable operation conditions and considering 
their changing in time safety structures and their 
among components and subsystems dependability 
and resulting in changes of their safety 
characteristics becomes much more complicated. 
Adding to this analysis, the outside of the critical 
infrastructures hazards coming from other systems, 
from  natural cataclysm and from other dangerous 
events makes the problem essentially more difficult 
to become solved in order to improve and to ensure 
high level of these systems safety.   
From the point of view of more precise analysis of 
the safety and effectiveness of critical infrastructures, 

 
Kołowrocki Krzysztof 

Soszyńska-Budny Joanna 
Maritime University, Gdynia, Poland 
 
 
 

Preliminary approach to safety analysis of critical infrastructures  
 
 
 

 
 Keywords 

safety, multistate system, aging, operation process, dependability, critical infrastructure 
 
Abstract 

In the paper the new results of the safety investigations of the multistate complex systems with dependent 
components at variable operation conditions called critical infrastructures are presented. The multi-state safety 
function of the critical infrastructure system is defined and determined for an exemplary critical infrastructure. 
In the developed models, it is assumed that the system components have the multistate exponential safety 
functions with interdependent departures rates from the subsets of the safety states. 
 



Kołowrocki Krzysztof, Soszyńska-Budny Joanna 
Introduction to safety analysis of critical infrastructures 

 

 74 

the developed methods should be based on a 
multistate approach [5], [10]-[11], [19]-[22] to these 
complex systems safety analysis instead of normally 
used two-state approach. This will enable different 
critical infrastructure inside and outside safety states 
to be distinguished, such that they ensure a 
demanded level of the system operation effectiveness 
with accepted consequences of the dangerous 
accidents for the environment, population, etc.  
In most safety analyses, it is assumed that 
components of a system are independent. But in 
reality, especially in the case of critical 
infrastructures, this assumption is not true, so that the 
dependencies among the critical infrastructure 
systems’ components and subsystems should be 
assumed and considered. It is a natural assumption, 
as after decreasing the safety state by one of 
components in a subsystem, the inside interactions 
among the remaining components may cause further 
components safety states decrease [11], [15]-[16]. In 
reality, in the critical infrastructures, it may even 
cause the whole system safety state dangerous 
degradation.  
To tie the results of investigations of the critical 
infrastructures inside-dependences together with the 
results coming from the assumed in the critical 
infrastructures outside-dependencies, the semi-
Markov models [1]-[5], [10]-[13] can be used to 
describe the complex systems operation processes. 
This linking of the inside and outside the critical 
infrastructures dependencies and including other 
outside dangerous events and hazards coming from 
the environment and from other dangerous processes, 
under the assumed their structures multi-state 
models, is the main idea of the critical infrastructures 
safety analysis methodology. This join considering 
of all these elements is a main innovative aspect of 
this approach and the basis for the formulation and 
development of the new solutions concerned with the 
modeling, identification, prediction, improvement 
and optimization of the safety of the complex critical 
infrastructures related to their operation processes 
and their inside and outside interactions.  
  
2. Multistate approach to safety analysis 

In the multistate safety analysis to define a system 
composed of ,n  ,Nn∈  ageing components we 
assume that: 
– Ei, ,,,2,1 ni K=  are components of a system, 
– all components and a system under consideration 

have the set of safety states {0,1,...,z}, ,1≥z  
– the safety states are ordered, the state 0 is the 

worst and the state z is the best, 
– the component and the system safety states 

degrade with time t, 

– Ti(u), ,,,2,1 ni K=  ,Nn∈  are random variables  
representing the lifetimes of components Ei in the 
safety state subset },,...,1,{ zuu +  while they 
were in the safety state z at the moment t = 0, 

– T(u) is a random variable representing the lifetime 
of a system in the safety state subset  

},,...,1,{ zuu +  while it was in the safety state z 
at the moment t = 0, 

– si(t) is a component Ei safety state at the moment 
t, ),,0 ∞∈<t  given that it was in the safety state 
z  at the moment t = 0, 

– s(t) is the system safety state at the moment t, 
),,0 ∞∈<t  given that it was in the safety state z 

at the moment t = 0. 
The above assumptions mean that the safety states of 
the ageing system and components may be changed 
in time only from better to worse, what is shown in 
Figure 1. 

 
                                                                                              transitions 

                                                 the worst state                                  the best state 

 
 
 

 
                .                                                

      . . .    0 1 u-1 z-1 z u . . . 

 
 

Figure 1. The ageing system and components safety 
states changes 
 
Definition 1. A vector    
 
   )],(,),1,(),0,([),( ztStStStS iiii K=⋅   
 
   for ),,0 ∞∈<t ,,,2,1 ni K=  
 
where     
 
   ))(())0(|)((),( tuTPzsutsPutS iiii >==≥= (1)   
 
   for ),,0 ∞∈<t ,,,1,0 zu K=                   
 
is the probability that the component Ei is in the 
safety state subset },...,1,{ zuu +  at the moment t, 

),,0 ∞∈<t  while it was in the safety state z at the 
moment t = 0, is called the multi-state safety function 
of a component Ei. 
 
Definition 2. A vector     
 
   )],,(,),1,(),0,([),( ztttt SSSS K=⋅ ),,0 ∞∈<t       (2)                                                            
 
where   
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   ),( utS  = P(s(t) ≥ u | s(0) = z) = P(T(u) > t)         (3) 
 
   for ),,0 ∞∈<t  u = 0,1,...,z,                                
 
is the probability  that the system is in the safety state 
subset },...,1,{ zuu +  at the moment t, ),,0 ∞∈<t  
while it was in the safety state z at the moment t = 0, 
is called the multi-state safety function of a system.  
It is clear that from Definition 1 and Definition 2, for 

,0=u  we have Si(t,0) = 1 and .1)0,( =tS  

The safety functions S(t,u), ),,0 ∞∈<t  u = 0,1,...,z, 
defined by (3) are called the coordinates of the 
system multistate safety function S(t ⋅, ) given by (2). 
Consequently, the relationship between the 
distribution function F(t,u) of the system S lifetime 
T(u)  in the safety state subset },...,1,{ zuu +  and the 
coordinate S(t,u) of its multistate reliability function 
is given by  
 
   F(t,u) = P(T(u) ≤  t) = 1 - P(T(u) > t) = 1 - S(t,u),   
 
  ),,0 ∞∈<t  u = 0,1,...,z. 
 
Under Definition 2, we have    

 
   S(t,0) ≥ S(t,1) ≥ . . . ≥ S(t,z), ),,0 ∞∈<t  
 
and if    

   p(t,u) = P(s(t) = u | s(0) = z), ),,0 ∞∈<t              (4)  

 
    u = 0,1,...,z,  
 
is the probability that the system is in the safety state 
u at the moment t, ),,0 ∞∈<t  while it was in the 
safety state z at the moment t = 0, then 
 
   S(t,0) = 1, S(t,z) = p(t,z), ),,0 ∞∈<t      (5) 
 
and  
 
    p(t,u) = S(t,u) – S ),1,( +ut  ,1,...,1,0 −= zu     (6) 
      
   ).,0 ∞∈<t     
 
Moreover, if  
 
   S(t,u) = 1 for t ≤ 0, u = 1,2,...,z, 
 
then      
 

   )(uµ = ∫
∞

0

,),( dtutS  u = 1,2,...,z,               (7) 

 
is the mean lifetime of the system in the safety state 
subset },,...,1,{ zuu +    

   2)]([)()( uunu µσ −= , u = 1,2,...,z,                  (8) 

 
where   
 

   ∫=
∞

0

2)( tun S(t,u)dt, u = 1,2,...,z,                (9) 

 
is the standard deviation of the system lifetime in the 
safety state subset },...,1,{ zuu +  and moreover    
 

   ∫=
∞

0

,),()( dtutpuµ  u = 1,2,...,z,              (10) 

 
is the mean lifetime of the system in the safety state 
u while the integrals (7), (9) and (10) are convergent.  
Additionally, according to (5)-(7) and (10), we get 
the following relationship  

   ),1()()( +−= uuu µµµ  ,1,...,1,0 −= zu    

 
   ).()( zz µµ =                                                     (11) 
 
Definition 3. A probability  
 
   r(t) = P(s(t) < r | s(0) = z) = P(T(r) ≤ t),  
 
   ),,0 ∞∈<t  
 
that the system is in the subset of safety states worse 
than the critical safety state r, r ∈{1,...,z} while it 
was in the safety state z at the moment t = 0 is called 
a risk function of the multi-state system [10], [14].   
Under this definition, from (3), we have     

    r(t) = −1  P(s(t) ≥ r | s(0) = z) = −1  S(t,r),        (12)   
 
   ),,0 ∞∈<t   
 
and if τ is the moment when the system risk exceeds 
a permitted level δ, then   

   =τ r ),(1 δ−                                                      (13) 
 
where r )(1 t− , if it exists, is the inverse function of the 
system risk function r(t). 
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3. Safety of multistate “m out of n” system   

One of basic multistate safety structures with 
components aging in time are “m out of n” systems. 
Definition 4. A multi-state system is called “m out of 
n” system if its lifetime T(u) in the safety state subset 

},...,1,{ zuu +  is given by    
 
   ),()( )1( uTuT mn +−=  m = 1,2,...,n, ,,,1 zu K=  

 
where )()1( uT mn +−  is the n-m+1-th order statistic in 

the sequence of the component lifetimes )(1 uT , 

)(2 uT , . . ., ).(uTn  
The above definition means that the multistate “m 
out of n” system is in the safety state subset 

},...,1,{ zuu +  if and only if at least m out of its n 
components are in this safety state subset. 
The multistate “m out of n” system is called a 
multistate parallel system if m = 1,  and it is called a 
multistate series system if m = n.  
Consequently, the lifetime T(u) in the safety state 
subset },...,1,{ zuu +  of the multistate parallel system 
is given by  
 
   )},({max)()(

1
)( uTuTuT i

ni
n

≤≤
==  ,,,1 zu K=  

 
and the lifetime T(u) in the safety state subset 

},...,1,{ zuu +  of the multistate series system is given 
by  
 
   )},({min)()(

1
)1( uTuTuT i

ni ≤≤
==  .,,1 zu K=  

 
Moreover, the multistate parallel system is in the 
safety state subset },...,1,{ zuu +  if and only if at 
least 1 of its n components are in this safety state 
subset and the multistate series system is in the 
safety state subset },...,1,{ zuu +  if and only all of 
its n components are in this safety state subset 
 
Definition 5. A multi-state “m out of n” system is 
called homogeneous if its component lifetimes Ti(u) 
in the safety state subset have an identical 
distribution function   
 
   )],(,),1,(,0[),( ztFtFtF iii K=⋅   
 
   for ),,0 ∞∈<t ,,,2,1 ni K=  
 
with the coordinates  
 
   ),(),( utFutFi =  for ),,0 ∞∈<t  
 

   ,,,1 zu K=  i = 1,2,...,n, 
 
i.e. if its components Ei have the same safety 
function  
 
   )],(,),1,(,1[),( ztStStS iii K=⋅   
 
   for ),,0 ∞∈<t ,,,2,1 ni K=  
 
with the coordinates 
 
   ),(1),(),( utFutSutSi −==   
 
   for ),,0 ∞∈<t  ,,,1 zu K=  i = 1,2,...,n. 
 
Proposition 1. [10] If in a homogeneous multi-state 
“m out of n” system 

(i) the components have exponential safety 
function given by 

 
    )],(,),1,(,1[),( ztStStS iii K=⋅                            (14) 
 
     for ),,0 ∞∈<t ,,,2,1 ni K=                                  
     where     

     








=≥≥
−

<
==

niut

tu

t

utSutSi

,...,2,1,0)(,0

    ],)(exp[

0                 ,1

),(),(

λ
λ  (15)                                

 
     with the intensity of departure )(uλ from the   

     safety state subset },...,1,{ zuu + ,  
(ii)  the components are independent,  

then the multistate system safety function is given by 
the formula 
 
     )],,(,),1,(,1[),( zttt SSS K=⋅                            (16)                                                                             
 
     where 
     

     ∑ −−







=

−

=

mn

tu
n

ut
0

]])(exp[1[),(
υ

υλ
υ

S    

     ])()(exp[ tun λυ−−                                           (17)   

     for ,0≥t  .,,1 zu K=           
 
From Proposition 1 we obtain the following 
corollaries. 
 
Corollary 1. If in a homogeneous multi-state parallel 
system 
(i) the components have exponential safety 

function given by (14)-(15) with the intensity of 
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departure )(uλ from the safety state subset 

},...,1,{ zuu + ,  
(ii)  the components are independent,  
then the multistate system safety function is given by 
the formula 
 
     )],,(,),1,(,1[),( zttt SSS K=⋅                                                                                  
 
where 
 

     ∑ −−







=

−

=

1

0
]])(exp[1[),(

n

tu
n

ut
υ

υλ
υ

S  

 
     ])()(exp[ tun λυ−−  

 
     ntu ]])(exp[1[1 λ−−−=  for ,0≥t  .,,1 zu K=     
         
Corollary 2. If in a homogeneous multi-state series 
system 
(i) the components have exponential safety 

function given by (14)-(15) with the intensity of 
departure )(uλ  from the safety state subset 

},...,1,{ zuu + ,  
(ii)  the components are independent,  
then the multistate system safety function is given by 
the formula 
 
     )],,(,),1,(,1[),( zttt SSS K=⋅                                                    
 
where 
 

     ∑ −−







=

=

0

0
]])(exp[1[),(

v
tu

n
ut υλ

υ
S  

 
     ])()(exp[ tun λυ−−  

 
      ])(exp[ tunλ−=  for ,0≥t  .,,1 zu K=             
 
4. Safety of multistate “m out of n” system 
with dependent components 

In a multi-state “m out of n” system with dependent 
components we may consider the dependency of the 
changes of their ageing safety states and assume that 
after changing the safety state subset by one of the 
system components to the worse safety state subset, 
the lifetimes of the remaining system components in 
this safety state subsets decrease. More exactly, we 
assume that if anyone of the system component gets 
out of the safety state subset },...,1,{ zuu + , then the 
safety of the remaining ones is getting worse so that 
their mean values of the lifetimes )(' uTi  in safety 

state subset },...,1,{ zuu +  become less according to 
the formula  
       

   )],([
1

)]([
1

)]([)]('[ uTE
n

n
uTE

n
uTEuTE iiii

−=−=     

 
   ,,,2,1 ni K=  .,,2,1 zu K=  
 
Generalizing, if ,1,,2,1,0, −= nKυυ  components of 
the system is out of the safety state subset 

},...,1,{ zuu + , the mean values of the lifetimes 

)(' uTi  in the safety state subset },...,1,{ zuu +  of the 
system remaining components are given by  
 

   )]([)]([)]([)]('[ uTE
n

n
uTE

n
uTEuTE iiii

υυ −=−=   

 
   for ,,,2,1 ni K=  .,,2,1 zu K=   
 
Hence, for the case when components have 
exponential safety functions given by (14)-(15) with 
the intensity of departure )(uλ  from the safety state 
subset },...,1,{ zuu + , according to the well known 
relationship between the lifetime mean value in this 
safety state subset and the intensity of departure from 
this safety state subset of the form  
 

   
)(

1
)]([

u
uTE i λ

=  for ,,,2,1 ni K=  ,,,2,1 zu K=  

 
we get the following formula for the intensities of 
departure from this safety state subset of the 
remaining components  
 

   )()()( u
n

n
u λ

υ
λ υ

−
=                                            (18) 

 
   for ,1,,2,1,0 −= nv K  .,,2,1 zu K=                                                 
 
Proposition 2. [11] If in a homogeneous multi-state 
“m out of n” system 
(i) the components have exponential safety 

function given by (14)-(15), 
(ii)   the components are dependent, 
(iii)  the intensities of departure from the safety state 

subsets of the components are given by (18), 
then the multistate system safety function is given by 
the formula 
 
   )],,(,),1,(,1[),( zttt SSS K=⋅                              (19)                                                                             
 
where 
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   ∑ −=
−

=

mn

tun
tun

ut
0

])(exp[
!

])([
),(

υ

υ

λ
υ

λ
S             (20) 

 
     for ,0≥t  .,,1 zu K=                    
 
Proof: We denote by ),,( utN  the number of 
components that got out of the safety state subset 

},,1,{ zuu K+  up to the moment ,t  .0≥t  Then the 
number ),( utN  is a process with the states 

n,,2,1,0 K  and the probability of its particular state 
is given by 

  
   )),((),( υυ == utNPutP   

 
   for ,,,2,1,0 nK=υ  .,,1 zu K=  
 
The above definition and the formula (18) mean 
that the process ),( utN  is a Markov process 
with the transition rates 
 

     













=+≠
+==

−
−

=
,,...,1,0,1,,0

1),(

)()(

)(

niij

ijun

u
in

n
in

uij λ

λ

λ  

 
i.e. with the following matrix of the transition rates 
between the states. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

   

).1()1(
  )(  0  00000

      

  0  )(  )(0000
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                1m                           2                 1                 0 
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M
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Since the “m out of n” system is out of the safety 
state subset },,1,{ zuu K+  if at least m  its 
components is in the reliability state subset 

},,,1,{ zuu K+  i.e. the system is out of this safety 

state subset when the process ),( utN  is at the state 

1+− mn , then the state 1+− mn  is the absorbing 
state and the above matrix of transition rates takes 
the following form  
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).1()1(
  0  0  00000

      

  0  0  00000

  0  0  )()(000

      

  0  0  00)()(0

  0  0  000)()(
        state

    

1

1

0
                1m                           2                 1                 0 

+×+
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M
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λλ

              (21) 

 
 
 
Thus, the distribution function of the system lifetime 
in the state subset },,1,{ zuu K+  is given by 
 

   

),()1),((

))((),(

1 utPmnutNP

tuTPut

mn +−=+−==

<=F

  

 
   for ,0≥t  ,,,1 zu K=  
 
and the suitable safety function component of this 
system is of the form  
 
   ),(1),( 1 utPut mn +−−=S                                       (22) 

 
   for ,0≥t  .,,1 zu K=                                                                
 
From the stochastic processes theory it follows that 
having given the matrix (21) of the transition rates 
between the states, it is possible to find the 
probability ),(1 utP mn +−  from the following system 

of equations. 
 

    

















=
−=

−=
−=

−=

−+−

−−−−

),(),(

),(),(),(
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utPnutPnutP
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utPnutPnutP

utPnutP

mnmn

mnmnmn

λ
λλ

λλ
λλ

λ

M
          (23)                                                                      

 
for ,0≥t  .,,1 zu K=  
It is supposed that all components of the analyzed 
system at the beginning are in the state subset 

},,,1,{ zuu K+  and therefore at the moment 0=t  

the process ),( utN  ,,,1 zu K=  is at the state 0. It 
means that the probability of its particular states 

,1,,2,1,0 +−= mnv K  of the process ),( utN  

,,,1 zu K=  at the moment 0=t  are given by 
 
    ,1),0(0 =uP 0),0( =uPv                                    (24) 
                                          
   for ,1,,2,1 +−= mnv K  .,,1 zu K=                                          
 
Applying Laplace’s transform to the system of 
equations (23) with the initial conditions (24), we 
obtain 
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λ
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where 
 

   ∫ −=
∞

0

]exp[),(),( dtstutPusP υυ   

   for ,1,,2,1 +−= mnKυ  
 
is a transform of the probability ),( utPυ  of its 
particular states .1,,2,1 +−= mnKυ  
Further, for zu ,,1K= , we have 
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From this system of equations we conclude that the 
transforms of the probability ),(1 usP mn +−  are equal  
 

   
1

1

1 )]([

)]([
),( +−

+−

+− +
=

mn

mn

mn
unss

un
usP

λ
λ

 for ,,,1 zu K=  

 
which may be written in the form of the following 
series 
 

   ∑
+

−=
−

=
++−

mn

mn
uns

un

s
usP

0
11 )]([

)]([1
),(

υ υ

υ

λ
λ

  

  for .,,1 zu K=  
 
After application of the inverse Laplace’s transform 
to the above equation, we have  
 

   ∑ −−=
−

=
+−

mn

mn tun
tun

utP
0

1 ])(exp[
!

])([
1),(

υ

υ

λ
υ

λ
  

   for ,0≥t  .,,1 zu K=  
 
Taking into account the last result and (22) we get 
(20), which completes the proof. #                                                                                                                        
                                                                                   
From Proposition 2 we obtain the following 
corollary. 
 
Corollary 3. If in a homogeneous multi-state “m out 
of n” system 

(i) the components have exponential safety 
functions given by (14)-(15), 

(ii)  the components are dependent;  
(iii)  the intensities of departures of the components 

from the safety state subsets are given by (18), 
then the time of the system lifetime in the state 
subset },,1,{ zuu K+  has the multi-state 
distribution function given by the formula 
 
   )],,(,),1,(,0[),( zttt FFF K=⋅                            (25) 
 
where 
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   for ,0≥t  .,,1 zu K=                                    
 
Remark 1. According to the definition of Erlang’s 
distribution, Corollary 3 means that, the multistate 
“m out of n” system lifetime )(uT  in the safety state 

subset },...,1,{ zuu + , ,,,2,1 zu K=  can be 
interpreted as the sum of 1+− mn  independent 
random variables with exponential distribution with 

the intensity of departure from this safety state subset 
equal to ).(unλ   
 
Corollary 4. If in a homogeneous multistate parallel 
system 

(i) the components have exponential safety 
functions given by (14)-(15), 

(ii)  the components are dependent;  
(iii)  the intensities of departures of components from 

the safety state subsets are given by (18), 
then the system safety function is given by the vector  
 
   )],,(,),1,(,1[),( zttt SSS K=⋅                                                                                             
 
where 
 

   ∑ −=
−

=

1

0
])(exp[

!
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ut
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   for ,0≥t  .,,1 zu K=                                                    
 
Corollary 5. If in a homogeneous multistate series 
system 

(i) the components have exponential safety 
functions given by (14)-(15), 

(ii)  the components are dependent;  
(iii)  the intensities of departures of components 

from the safety state subsets are given by 
(18), 

then the system safety function is given by the vector  
 
   )],,(,),1,(,1[),( zttt SSS K=⋅                                                                                             
 
where 
 
   ])(exp[),( tunut λ−=S  for ,0≥t  .,,1 zu K=       
                                                                   
5. Safety of multistate “m out of l”-series 
system 

To define a “m out of l” – series system, assume that:  
– k is the number “m out of l” subsystems of the 

system,  
– l is the numbers of components of the “m out of 

l” subsystems, 
– Eij, i = 1,2,...,k, j = 1,2,...,l, k, l ∈ N, are 

components of the system, 
– all components Eij have the same safety state set 

as before {0,1,...,z}, 
– Tij(u), i = 1,2,...,k, j = 1,2,...,l, k, l ∈ N, are 

random variables representing the lifetimes of 
components Eij in the safety state subset 

},,...,1,{ zuu +  while  they  were  in the safety 
state z at the moment t = 0,  
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– sij(t) is a component Eij safety state at the 
moment t, ),,0 ∞∈<t  while they were in the 
safety state z at the moment t = 0. 

 
Definition 6. A vector    

    Sij(t ⋅, ) = [Sij(t,0),Sij(t,1),...,Sij(t,z)],                    (27) 

   ),,0 ∞∈<t  i = 1,2,...,k, j = 1,2,...,l,                                
 
where     

   Sij(t,u) = P(sij(t) ≥ u | sij(0) = z)  

               = P(Tij(u) > t),                                         (28) 

   ),,0 ∞∈<t u = 0,1,...,z,                               
 
is the probability that the component Eij is in the 
safety state subset },...,1,{ zuu +  at the moment t, 

),,0 ∞∈<t  while it was in the safety state z at the 
moment t = 0, is called the multistate safety function 
of a component Eij.  
    The safety functions Sij(t,u), ),,0 ∞∈<t  u = 
0,1,...,z, defined by (28) are called the coordinates of 
the component Eij, i = 1,2,...,k, j = 1,2,...,l, multistate 
safety function Sij(t ⋅, ) given by (27). Thus, the 
relationship between the distribution function Fij(t,u) 
of the component Eij, i = 1,2,...,k, j = 1,2,...,l, lifetime 
Tij(u) in the safety state subset },...,1,{ zuu +  and 
the coordinate Sij(t,u) of its multistate safety function 
is given by  
 
   Fij(t,u) = P(Tij(u) ≤  t) = 1 - P(Tij(u) > t)  
 
               = 1 - Sij(t,u), ),,0 ∞∈<t  u = 0,1,...,z. 
 
Definition 7. A multistate system is called an “m out 
of l ”-series system if its lifetime T(u) in the safety 
state subset  },...,1,{ zuu +  is given by    
 

   )(min)( )1(1
uTuT mliki +−≤≤

= , ,,...,2,1 lm = u = 1,2,...,z, 

 
where )()1( uT mli +−

 are the 1+− ml order statistics in 

the set of random variables  

   )(1 uTi , )(2 uTi , ..., )(uTil ,  ,,...,2,1 ki =  u = 1,2,...,z.  

 
    The above definition means that the multi-state 
“ m out of l ”-series system is composed of k 
subsystems that are multi-state “m out of l ” 
systems and it is in the safety state subset 

},...,1,{ zuu +  if all its “ m out of l ” subsystems are 
in this safety state subset. In this definition l denote 
the numbers of components in the “m out of l ” 
subsystems. The numbers k, mand l are called the 
system structure shape parameters.  
 
Definition 8. A multi-state “m out of n”-system is 
called homogeneous if its components Eij have the 
same safety function  
 
   )],(,),1,(,1[),( ztStStS ijijij K=⋅   

 
   for ),,0 ∞∈<t ,,,2,1 ki K= ,,,2,1 lj K=  
 
with the coordinates 
 
   ),(),( utSutSij =  for ),,0 ∞∈<t   

 
   ,,,2,1 zu K=  ,,,2,1 ki K= .,,2,1 lj K=  
  
From Proposition 1 and Corollary 2, we have the 
following propositions. 
  
Proposition 3. [10] If in a homogeneous regular 
multi-state “m out of l”-series system 
(i) the components have exponential safety 

function given by 
 
     )],(,),1,(,1[),( ztStStS ijijij K=⋅                         (29)                            

     for ),,0 ∞∈<t ,,,2,1 ki K= ,,,2,1 lj K=    
 
where     
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  (30)        

 
with the intensity )(uλ of departure from the safety 

state subset },...,1,{ zuu + ,  
(ii)  the components are independent, 
then the multistate system safety function is given by 
the formula 
 
     )],,(,),1,(,1[),( zttt SSS K=⋅                            (31)                                  
 
where 
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     ktul ]])()(exp[ λυ−−  
 
     for ,0≥t  .,,1 zu K=             
 
6. Safety of multistate “m out of l”-series 
system with dependent components 

We assume similarly as in Section 4 that if 
,1,,2,1,0, −= lKυυ  components of each “m out of l” 

subsystems of the system is out of the safety state 
subset },...,1,{ zuu + , the mean values of the 

lifetimes )(' uTij  in the safety state subset 

},...,1,{ zuu +  of this subsystem remaining 
components are given by  
 

   

)]([

)]([)]([)]('[

uTE
l

l

uTE
l

uTEuTE

ij

ijijij

υ

υ

−=

−=
  

 
   for ,,,2,1 lj K=  .,,2,1 zu K=   
 
Hence, for the case when subsystem components 
have exponential safety functions given by (29)-(30) 
with the intensity of departure )(uλ from the safety 

state subset },...,1,{ zuu + , according to the well 
known relationship between the lifetime mean value 
in this safety state subset and the intensity of 
departure from this safety state subset of the form  
 

   
)(

1
)]([

u
uTE ij λ

=  for ,,,2,1 lj K=  ,,,2,1 zu K=  

 
we get the following formula for the intensities of 
departure from this safety state subset of the  
subsystem remaining components  
 

    )()()( u
l

l
u λ

υ
λ υ

−
=  for ,1,,2,1,0 −= lKυ        (33) 

   .,,2,1 zu K=                                                  
 
From Proposition 2 and Corollary 3, we have the 
following propositions. 
 
Proposition 4. [11] 
If in a homogeneous multi-state “m out of l”-series 
system 
(i) the components have exponential safety 

function given by (29)-(30), 
(ii)   the components are dependent, 
(iii)  the intensities of departure from the safety state 

subsets of the components are given by (33), 

then the multistate system safety function is given by 
the formula 
 
   )],,(,),1,(,1[),( zttt SSS K=⋅                              (34) 
 
where 
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   for ,0≥t  .,,1 zu K=    
                 
7. Modelling system variable operation 
conditions 

We assume that the system during its operation 
process is taking ,, Nv ∈ν  different operation states 

..,..,, 21 νzzz  Further, we define the system 

operation process )(tZ , ),,0 +∞∈<t  with discrete 

operation states from the set  }..,..,,{ 21 νzzz  
Moreover, we assume that the system operation 
process Z(t) is a semi-Markov process [1]-[6], [10]-
[13] with the conditional sojourn times blθ  at the 

operation states bz  when its next operation state is 

,lz  ,,...,2,1, vlb =  .lb ≠  Under these assumptions, 

the system operation process may be described by:   
- the vector of the initial probabilities 

),)0(()0( bb zZPp ==  ,,...,2,1 vb =  of the system 

operation process Z(t) staying at particular operation 
states at the moment 0=t   
 
   )]0(),...,0(),0([)]0([ 211 νν ppppb =x ;                 (36) 
 
- the matrix of probabilities ,blp  ,,...,2,1, vlb =  

,lb ≠  of the system operation process Z(t) 

transitions between the operation states bz  and lz   
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22221
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x ,                           (37) 

 
where by formal agreement  
 

   0=bbp  for ;,...,2,1 vb =  

 
- the matrix of conditional distribution functions 

)()( tPtH blbl <= θ , ,,...,2,1, vlb =  ,lb ≠  of the 
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system operation process Z(t) conditional sojourn 
times blθ  at the operation states  
 

   ννx)]([ tH bl
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where by formal agreement  
 
   0)( =tH bb  for .,...,2,1 vb =  
 
We introduce the matrix of the conditional density 
functions of the system operation process Z(t) 
conditional sojourn times blθ  at the operation states 

corresponding to the conditional distribution 
functions )(tH bl  
 

   ννx)]([ thbl
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where  
 

   )]([)( tH
dt

d
th blbl =  for ,,...,2,1, vlb = ,lb ≠  

 
and by formal agreement  
 
   0)( =thbb  for .,...,2,1 vb =  
 
The mean values of the conditional sojourn times blθ  

of the system operation process Z(t) are given by   

   ][ blbl EM θ= ∫ ∫==
∞ ∞

0 0

,)()( dttthttdH blbl
           (40)   

   ,,...,2,1, vlb =  .lb ≠     
 
From the formula for total probability, it follows that 
the unconditional distribution functions of the 
sojourn times ,bθ ,,...,2,1 vb =  of the system 

operation process )(tZ  at the operation states ,bz  

,,...,2,1 vb =  are given by [1]-[6], [10]-[13]  
 

   )(tHb  = ∑
=

v

l
blbl tHp

1
),(  .,...,2,1 vb =                      (41) 

 

Hence, the mean values ][ bE θ  of the system 
operation process )(tZ  unconditional sojourn times 

,bθ  ,,...,2,1 vb =  at the operation states are given by   
      

   ][ bb EM θ=  = ∑
=

v

l
blblMp

1
, ,,...,2,1 vb =               (42) 

 
where blM  are defined by the formula (40).  
The limit values of the system operation process 

)(tZ  transient probabilities at the particular 
operation states  
 

   )(tpb = P(Z(t) = bz ) , ),,0 +∞∈<t  ,,...,2,1 vb =  

 
are given by [1]-[6], [10]-[13]   
 

   bp  = )(lim tpb
t ∞→

= ,

1
∑
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l
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                                (43) 

   ,,...,2,1 vb =   
 
where ,bM  ,,...,2,1 vb =  are given by (42), while the 

steady probabilities bπ  of the vector νπ xb 1][  satisfy 
the system of equations 
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In the case of a periodic system operation process, 
the limit transient probabilities bp , ,,...,2,1 vb =  at 

the operation states defined by (43), are the long term 
proportions of the system operation process )(tZ  

sojourn times at the particular operation states ,bz  

.,...,2,1 vb =  
 
8. Safety of multistate system at variable 
operation conditions 

We assume that the changes of the system operation 
process )(tZ  states have an influence on the system 

multistate components iE , ,,...,2,1 ni =  safety and 

the system safety structure as well. We mark by 
),()(

1 uT b

 
),()(

2 uT b

 
)(..., )( uT b

n  
the system components 

,1E ,2E ..., nE  conditional lifetimes in the safety 

states subset },...,1,{ zuu + , ,,...,2,1 zu =  and by 

)()( uT b

 
the system conditional lifetimes in the safety 

states subset },...,1,{ zuu + , ,,...,2,1 zu =  while the 

system is at the operation state ,bz .,...,2,1 vb =  
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Further, we define the conditional safety function of 
the system multi-state component iE , ,,...,2,1 ni =  

while the system is at the operation state 
,bz ,,...,2,1 vb =  by the vector [7]-[10], [17]-[20]  

 

   
)()],([ b

i tS ⋅ =[1, ,)]1,([ )(b
i tS ..., )()],([ b

i ztS ],        (45)        
 
where  
 

   
))()(()],([ )()(

b
b

i
b

i ztZtuTPutS =>=                (46) 

 
for ),,0 ∞∈<t  ,,...,2,1 zu = ,,...,2,1 vb =  and the 
conditional safety function of the multistate system 

while the system is at the operation state ,bz  

,,...,2,1 vb =  by the vector [7]-[10], [17]-[20] 
 

   
)()],([ bt ⋅S = [1, ,)]1,([ )(btS ..., )()],([ bztS ,           (47) 

                       
where  
 
   )()],([ butS ))()(( )(

b
b ztZtuTP =>=                 (48)                          

 
for ),,0 ∞∈<t  ,,...,2,1 zu = .,...,2,1 ν=b  
The system conditional lifetimes  
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2
)(

1
)( uTuTuTTuT b

n
bbb =

  
 
at the operation states ,bz  defined for 

,,...,2,1 zu = ,,...,2,1 ν=b  ,Nn∈  are dependent on 

the system components conditional lifetimes ),()(
1 uT b

 
),()(

2 uT b

 
),(..., )( uT b

n  
at the operation state bz  and the 

coordinates of the system conditional multistate 
safety functions 

 
 

 

    
)()],([ butS
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1 )])],([,...,)],([,)],(([[ bb
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bb utSutSutSS=
 

 
at the operation state bz , defined for 

),,0 ∞∈<t ,,...,2,1 zu = ,,...,2,1 ν=b  ,Nn∈  are 
dependent on the components conditional safety 
function ,)],([ )(

1
butS

 
,)],([ )(

2
butS

 
)()],([..., b

n utS at 

the operation state bz . 

The safety function )()],([ b
i utS  is the conditional 

probability that the component iE  lifetime )()( uT b
i  in 

the safety state subset },...,1,{ zuu +  is greater than t, 

while the process Z(t) is at the operation statebz . 

Similarly, the safety function )()],([ buts is the 

conditional probability that the system lifetime 
)()( uT b  in the safety state subset },...,1,{ zuu +  is 

greater than t, while the process Z(t) is at the 
operation state .bz   

Consequently, we mark by )(uT  the system 
unconditional lifetime in the safety states subset 

},...,1,{ zuu + , ,,...,2,1 zu =  and we define the system 
unconditional safety function by the vector 
 
   ),( ⋅tS = [1, ),1,(tS ..., ),( ztS ],                            (49) 
                                
where  
 
  ))((),( tuTPut >=S  for ),,0 ∞∈<t                   (50) 
 
   .,...,2,1 zu =                  
 
In the case when the system operation time θ  is 
large enough, the system unconditional safety 
function is given by [33], [50]   
   

   ),( utS )(

1
]),([ b

v

b
b utp∑≅

=
S                              (51) 

 
   for 0≥t , ,,...,2,1 zu =   
                                                                       
where )()],([ butS , ,,...,2,1 zu = ,,...,2,1 ν=b  are the 
coordinates of the system conditional safety 
functions defined by (47)-(48) and bp , ,,...,2,1 ν=b  

are the system operation process limit transient 
probabilities given by (43). 
 
9. Safety of multistate “m out of l 
”- series system at variable operation 
conditions 

From Proposition 1 and Corollary 2, we have the 
following propositions. 
  
Proposition 5. [11] If in a homogeneous regular 
multi-state “m out of n”-series system operating at 
variable conditions  
(i) the components have exponential safety 

function given by  
 

   
)()],([ b

ij tS ⋅ = [1, ,)]1,([ )(b
ij tS ..., )()],([ b

ij ztS ]    (52)    

                   
   for ),,0 ∞∈<t ,,,2,1 ki K= ,,,2,1 lj K=                              
 
where     
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  (53)           

 
with the intensity of departure )()]([ buλ  from the 
safety state subset },...,1,{ zuu + ,  
(ii)  the components are independent,  
then the multistate system safety function is given by 
the formula 
 
   )],,(,),1,(,1[),( zttt SSS K=⋅                          (54)                                                                            
 
where 
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   ,0≥t  .,,1 zu K=   
  
Proposition 6.  [11] If in a homogeneous multi-state 
“m out of n”-series system 
(i) the components have exponential safety 

function given by (52)-(53) with the intensity 
)()]([ buλ  of departure from the safety state 

subset },...,1,{ zuu + ,  
(ii)  the components are dependent, 

(iii)  the intensities )()]([ buλ of departure from the 
safety state subsets of the components at the 
operation states bz  are given by (33), i.e.  

(iv)  

        )()()( )]([)]([ bb u
l

l
u λ

υ
λ υ

−
=  

 
        for ,1,,2,1,0 −= lKυ ,,,2,1 zu K=     
                
then the multistate system safety function is given by 
the formula 
 
   )],,(,),1,(,1[),( zttt SSS K=⋅                              (56)                                                                             
 
where 
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   for ,0≥t  .,,1 zu K=        

10. Safety of an exemplary critical 
infrastructure          

We consider a parallel-series system composed of 
components ,ijE  ,3,2,1=i  ,36,...,2,1=j operating at 

three operation states 1z , 2z  and 3z , i.e. 3=ν .  We 

assume that the system  safety structure and the 
system components’ safety characteristics are 
changing at the various operation states.   
     At the operation state 1z  the system is composed 
of one “24 out of 36” subsystem composed of 
components ,ijE  ,1=i  .36,...,2,1=j  with the safety 

structure presented in Figure 2 
 
 
. 
 
 
 
 
 
 
 
 
 
Figure 2. The scheme of the “24 out of 36” system 
safety structure at the operation state 1z  
 
At the operation state 2z  the system is composed of 
two “24 out of 36” subsystems linked in series and 
composed of components ,ijE  ,2,1=i  ,36,...,2,1=j  

with the safety structure presented in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The scheme of the “24 out of 36”-series 
system safety structure at the operation state 2z  
 
At the operation state 3z , the system is composed of 

three “24 out of 36” subsystems linked in series and 
composed of components ,ijE  ,3,2,1=i  
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,36,...,2,1=j  with the safety structure presented in 
Figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The scheme of the “24 out of 36”-series 
system safety structure at the operation state 3z  

 
We arbitrarily assume that the transient probabilities 
of the system at particular operation states 1z , 2z  

and 3z  respectively are  

 
   ,2.01 =p  ,4.02 =p  .4.03 =p  
 
Moreover, we distinguish four safety states of the 
system components 0, 1, 2, 3, i.e. ,3=z  and we fix 

that the critical safety state is .2=r  Consequently, 
we define the four-state safety functions of the 
system components ,ijE  ,1=i  ,36,...,2,1=j  at the 

operation state 1z  in the form of the vector   
 
  )1()],([ ⋅tSij  

   = [1, )1()]1,([ tSij , ,)]2,([ )1(tSij
)1()]3,([ tSij ],  

 
   ,1=i  ,36,...,2,1=j  
 
with the exponential coordinates 
 
   ],exp[)],([ )1( ututSij −=  3,2,1=u  ,1=i   

 
   ,36,...,2,1=j  
 
and the four-state safety functions of the system 
components ,ijE  ,2,1=i  ,36,...,2,1=j  at the 

operation state 2z  in the form of the vector   
 
  )2()],([ ⋅tSij  

   = [1, )2()]1,([ tSij , ,)]2,([ )2(tSij
)2()]3,([ tSij ],     

 

   ,2,1=i  ,36,...,2,1=j  
 
with the exponential coordinates 
 
  ],2exp[)],([ )2( ututSij −=  ,3,2,1=u  ,2,1=i   

 
   ,36,...,2,1=j  
 
and the four-state safety functions of the system 
components ,ijE  ,3,2,1=i  ,36,...,2,1=j  at the 

operation state 3z  in the form of the vector   

 
   )3()],([ ⋅tSij  

    = [1, )3()]1,([ tSij , ,)]2,([ )3(tSij
)3()]3,([ tSij ],     

 
    ,3,2,1=i  ,36,...,2,1=j  
  
with the exponential co-ordinates 
 
   ],3exp[)],([ )3( ututSij −=  3,2,1=u  ,3,2,1=i   

 
   .36,...,2,1=j  
 
Since the shape parameters of the considered “24 out 
of 36” system are: 
 
- ,1)1( =k  ,36)1( =l  ,24)1( =m  at the operation state 

,1z  
 
- ,2)2( =k  ,36)2( =l  ,24)2( =m  at the operation state 

,2z  
 
- ,3)3( =k  ,36)3( =l   ,24)3( =m  at the operation 
state ,3z  
 
then applying directly the formulae  (56)-(57), we get 
the system safety function  
 
   ),( ⋅tS ),1,(,1[ tS= ),2,(tS )],3,(tS     t ≥ 0,    (58)  
  
 
where  
 

   ),( utS  
 

   ∑ −∑≅
−

==

)()(

0

)()(
)(

1
]])(exp[

!

])([
[

bmbl bkb
b

b
b tul

tul
p

υ

υν
λ

υ
λ

 

 

   ∑ −=
=

12

0
]36exp[

!

]36[
2.0

υ

υ

υ
ut

ut
 

 E11 

 E12 

 E13 

E136 

  … 

 E21 

 E22 

 E23 

E236 

  … 

 E31 

 E32 

E33 

E336 

  … 



Journal of Polish  Safety and Reliability Association 
Summer Safety and Reliability Seminars, Volume 3, Number1, 2012                     

 

 87 

 

   ∑ −+
=

12

0

2]]72exp[
!

]72[
[4.0

υ

υ

υ
ut

ut
 

 

   ∑ −+
=

12

0

3]]108exp[
!

]108[
[4.0

υ

υ

υ
ut

ut
                      (59) 

 
   for t ≥ 0, .3,2,1=u                                          
 
The approximate graphs of the coordinates of the 
complex rope system safety function are presented in   
Figure 5.  
 

 
Figure 5. The graph of the exemplary critical 
infrastructure safety function ),( ⋅tS coordinates 
 
The expected values and standard deviations of the 
system unconditional lifetimes in the safety state 
subsets },3,2,1{  },3,2{  },3{  calculated from the 
results given by (58)-(59), according to (7)-(9), 
respectively are:  
 
   )1(µ ≅ 0.169, 011.0)1( ≅σ ,                           (60) 

 
   )2(µ ≅ 0.085, 003.0)2( ≅σ ,                             (61)                            
 
   )3(µ ≅ 0.056, 001.0)3( ≅σ                              (62) 
 
and further, considering (11) and (60)-(62), the mean 
values of the unconditional lifetimes in the particular 
safety states 1, 2, 3, respectively are:    
 
   084.0)2()1()1( =−= µµµ     
 
   029.0)3()2()2( =−= µµµ     
 
   056.0)3()3( == µµ .                                (63) 
 
Since the critical reliability state is r = 2, then the 
system risk function, according to (12), is given by  
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Hence, by (13), the moment when the system risk 
function exceeds a permitted level, for instance δ  = 
0.05, is  
 
   τ = r−1(δ) 066.0≅ .                                              (65) 
 

Figure 6. The graph of the exemplary critical 
infrastructure risk function )(tr   
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