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Abstract

In the paper the new results of the safety invatiigs of the multistate complex systems with depen
components at variable operation conditions caikitital infrastructures are presented. The muétes safety
function of the critical infrastructure system ifided and determined for an exemplary criticatasfructure.

In the developed models, it is assumed that theesygomponents have the multistate exponentiakysafe
functions with interdependent departures rates fittarsubsets of the safety states.

1. Introduction operating processes having significant influence on
. their safety. This complexity and the inside-
'Currently,' the ~ newest trenqls in_ the Safen./infrastructure and outside-infrastructure
mvespgauons of com.pilex t'echnlcal systems analysi dependencies and hazards cause that there is a need
are directed to the critical infrastructures. Imegeal, to develop new comprehensive approaches and
a critical infrastructure is a single complex systef eneral methods of analysis, identification,
Iige ;f: alﬁ:a:)dr ao:letsvg?trksct): (é:)r:lé)slex tf;?e fszifforg rediction, improvement and optimization for these
( ; tructu .) unctl complex system safety. We meet complex critical
coIIaborapver and syne_rglstlcally In order_to 8% infrastructure systems, for instance, in piping
to a continuous production flow of essentials goodst ansportation of water ’gas oil and vari'ous cloaini
and_services. These are complex systems th ubstances, in port and maritime transportation.

significaqt features are inside-_system d.ependendeé)ptimization of the structures, operation processes
and outside-system dependencies, that in the dase 8nd maintenance strategies of critical infrastmestu

damage have significantly destructive influence on ith respect to their safety and costs is very

the Q_(ta_alth, s}alfety arr:d security, eco_r:_omlcs da?da_Btom important and very often also complicated and often
conditions of largeé human communities and terri Oryﬁft possible to perform by practitioners because of

arteas' tThese systemts ared made of Irla}rge tnugnk;gr e mathematical complexity of the applied methods.
Interacting components and even small perturbations, addition, analyzing the critical infrastructuras
can trigger large scale consequences in critica

y A itinl “their variable operation conditions and considering
Infrastructures that may cause multiple treats iny,q;. changing in time safety structures and their
human life qnd act!V|'§y. For the above_ reason, ras aamong components and subsystems dependability
extended failure within one of these infrastructure and resuling in changes of their safety

may resu!t ir_1_the critical incapacity or destruntio characteristics becomes much more complicated.
and can significantly damage many aspects of humaf&dding to this analysis, the outside of the critica

!'f? etmd ¢ furtlgler dcagcadtlrr]lg re]lcrostsh thet lg_ltllcal infrastructures hazards coming from other systems,
Infrastructure boundaries, th€y nhave e poteiial - g5 patyral cataclysm and from other dangerous

multi-infrastructural collapse with unprecedented a events makes the problem essentially more difficult

'lt\r/lansnaf[tlorr\]al_ de}nger?us corl;s?quenf[:es;[h | fto become solved in order to improve and to ensure
any technical systems Dbelong 1o the class ohigh level of these systems safety.

complex critical infrastructure systems as a restilt §rom the point of view of more precise analysis of

the large number of |n'teract|ng components anGhe safety and effectiveness of critical infrastuoes,
subsystems they are built of and their complicate
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the developed methods should be based on a T(u),i=212...,n, nON, are random variables

multistate approach [5], [10]-[11], [19]{22] toeike representing the lifetimes of componeffsn the
complex systems safety analy3|s |'nstead of nprmally safety state subsefu,u+1...,2}, while they
used two-state approach. This will enable different . _
L - . were in the safety stasat the moment = 0,
critical infrastructure inside and outside safdbtes . . ) I
N — T(u) is a random variable representing the lifetime
to be distinguished, such that they ensure a .

) . of a system in the safety state subset
demanded level of the system operation effectivenes + hile it i th fotv stage
with accepted consequences of the dangerous {uu+1...,2, while it was in the safety s
accidents for the environment, population, etc. at the moment = 0,

In most safety analyses, it is assumed that~ S(U) is @ componerE safety state at the moment
components of a system are independent. But in t t0<0,), given that it was in the safety state
reality, especially in the case of critical z at the moment= 0,

infrastructures, this assumption is not true, st the  — g(t) is the system safety state at the montent
dependencies among the critical infrastructure t[I< 0,0), given that it was in the safety state

systems’ components and subsystems should be 4t the moment= 0.

assumed and considered. It is a natural assUmptiofhe aphove assumptions mean that the safety states o
as after decreasing the safety state by one oOfye ageing system and components may be changed

components in a subsystem, the inside interactiong, time only from better to worse, what is shown in
among the remaining components may cause furthegjgyre 1.

components safety states decrease [11], [15]-]fh6].

reality, in the critical infrastructures, it may esv transitions
cause the whole system safety state dangerous
degradation. {

results coming from the assumed in the critical
infrastructures  outside-dependencies, the semi-
Markov models [1]-[5], [10]-[13] can be used to theworst state the best stat
describe the complex systems operation processes.

This linking of the inside and outside the critical Figure 1.The ageing system and components safety
infrastructures dependencies and including othestates changes

outside dangerous events and hazards coming from

the environment and from other dangerous processe®efinition 1.A vector

under the assumed their structures multi-state

models, is the main idea of the critical infrastmes St)=[S t0,StD....S(t 2]

safety analysis methodology. This join considering

of all these elements is a main innovative aspéct o for t J<0,),i=12,...,n,

this approach and the basis for the formulation and

development of the new solutions concerned with thgyhere

modeling, identification, prediction, improvement

and optimization of the safety of the complex caiti - - — ) =

infrastructures related to their operation procgsse StW=pPsM2uls0)=2=PTU>1)1)

and their inside and outside interactions.

To tie the results of investigations of the critica
infrastructures inside-dependences together wigh th 90)@ - @@ - @@
Y

fortd<0,0),u=0}...,2

2. Multistate approach to safety analysis _ . o
is the probability that the componeBt is in the

In the multistate safety analysis to define a syste  gafety state subsdu,u+1,...,zZ} at the moment,
composed oh, nLIN, ageing components we t < 0,0), while it was in the safety stateat the

assume that: momentt = 0, is called the multi-state safety function

- E,1=12,...,n, are components of a system, of a componerE,
— all components and a system under consideration
have the set of safety states {0,1},..z2=>1, Definition 2.A vector
— the safety states are ordered, the state O is the
worst and the stateis the best, S(t,) =[St,0),S¢)),...,S(t,2)], t 0<0,0), (2)
— the component and the system safety states
degrade with time, where

74



Journal of PolishSafety and Reliability Association
Summer Safety and Reliability Seminafelume 3, Numberl, 2012

S(t,u) =P(s(t) 2 u| s(0) =2) =P(T(u) >t) (3) L) = TS(t,u)dt, U=12.2 7)
0
for t < 0,00), u=0,1,..7,

is the mean lifetime of the system in the safedyest
is the probability that the system is in the saf#ate  Subse{u,u+1...z},
subset{u,u+1,...,zZ} at the moment, t[I<O0,o),
while it was in the safety staveat the moment = 0, o(u) =+/nu) -[uW]* ,u=1.2,.z2 (8)
is called the multi-state safety function of a eyst
It is clear that fronDefinition 1andDefinition 2 for  \where
u=0, we haveS(t,0) =1 andS(t,0) = 1.
The safety function$§(t,u), t [0< 0,), u=0,1,...,
defined by (3) are called the coordinates of the
system multistate safety functi@t,!) given by (2).
Consequently, the relationship between theiS the standard deviation of the system lifetiméhia
distribution functionF(t,u) of the systens lifetime  Safety state subsét,u+1,....z and moreover
T(u) in the safety state subsat,u+1,...,z ahd the

n(u) = 2/t S(Lu)dt, u=1,2,..2, (9)

poo_rdinateS(t,u) of its multistate reliability function au) = ]‘-’ p(t,u)dt, u=12,..2, (10)
is given by 0
F(t,u) =P(T(u) < t) =1 -P(T(u) >t) =1 -S(t,u), is the mean lifetime of the system in the safesyest
u while the integrals (7), (9) and (10) are convatge
t0< 0,0), u=0,1,..2. Additionally, according to (5)-(7) and (10), we get

the following relationship

UnderDefinition 2 we have _
Al) = uu)—uu+l), u=041...,z-1,

St,0)= S(t,1) = . . .= S(t,2), t <0, ),

H(2) = U(2). (11)
and if
Definition 3 A probability
p(t,u) = P(s(t) = u|s(0) =2), t[<0,00), (4)
r(t) = P(s(t) <r | s(0) =2) = P(T(r) <),
u=0,1,..7

t 0< 0, ),

is the probability that the system is in the safdhte
u at the moment, t0<0,), while it was in the that the system is in the subset of safety statesev

safety state at the momerntt= 0, then than the critical safety state r [0{1,...,zZ} while it
was in the safety stateat the moment = 0 is called
St,0) = 1,5(t,2) = p(t,2), t 0< 0, ) (5) a risk function of the multi-state system [10],]14

Under this definition, from (3), we have

and () =1- P(st) 21 |s(0) =2) = 1- S(tr),  (12)

ptu) = S(t,u) —S(t,u+1), u=01...z-1, (6) {0< 0,00),

t < 0, ). - ,

and if ris the moment when the system risk exceeds
Moreover. if a permitted leveb, then
— -1

Stu)=1fort<0,u=1,2,...7 T=r"(9), (13)

then wherer (t), if it exists, is the inverse function of the

system risk functiom(t).
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3. Safety of multistate ‘m out of n” system u=1...,z,i=1.2,..n,

One of basic multistate safety structures with. it it <E h h ot
components aging in time arm‘out ofn” systems. 1.e. I IS componentst; have the same salely

Definition 4.A multi-state system is calledrfout of ~ UNCtion
n" system if its lifetimeT(u) in the safety state subset B
{u,u+1,..,7 is given by StY=RS¢D.....S(t2)]

T(u) :T(n—m+l) (U), m= 1,2,---7111 u :l~-~;za fortl:l< O’OO)’I - lzl""”'

with the coordinates

where T _ ., (u) is then-m+1-th order statistic in

the sequence of the component lifetim&gu , ) S(t,u)=S(t,u) =1-F(t,u)
T,u), ..., T, (u).
The above definition means that the multistate “

out of n” system is in the safety state subset N . _
{u,u+1...,2 if and only if at leasm out of itsn Proposition 1 [10] If in a homogeneous multi-state

components are in this safety state subset. ~mout ofn” system .
The multistate  out of n” system is called a () the components have exponential safety

multistate parallel systemifhi= 1, and it is called a function given by
multistate series systemrif=n.

fortd<0,:0), u=1,...,z,i=1.2,.n.

Consequently, the lifetim@(u) in the safety state SEI=LS ¢D.....S (2] (14)
subset{u,u+1,...,7Z} of the multistate parallel system
IS glven by fortD<0,°°),|=l,2,...,n,
where
TU=T, W)= Tax{Ti (W}, u=1...,z 1 t<0
S (t,u) = S(t,u) =1 exp[-A(u)t], (15)
and the lifetimeT(u) in the safety state subset t=0,A(u)=0,i =12,...,n
{u,u+1,...,Z} of the multistate series system is given
by with the intensity of departucé(u) from the

_ safety state subsf,u+1,...,2},
T(W) =Ty W) =min{T, (W} u=1..z (i) the components are independent,
then the multistate system safety function is gilgn
Moreover, the multistate parallel system is in thethe formula
safety state subsdu,u +1,...,z if and only if at

least 1 of itsn components are in this safety state St) =RStD.....St2)], (16)
subset and the multistate series system is in the
safety state subsdu,u +1,...,z} if and only all of where

its n components are in this safety state subset

S(t,u) = z( J[l— expl-A(u)t]]*

n
Definition 5. A multi-state ‘m out of n” system is oo\ U
called homogeneous if its component lifetinTgg)

in the safety state subset have an identical exp[—(n—u)/_l(u)t] (17)
distribution function fort=0, u=1...,z
F t.D=[0,F ¢J)....,F (t,2)] From Proposition 1 we obtain the following
corollaries.

fort<0,),i =12,...,n, : .
Corollary 1.If in a homogeneous multi-state parallel

ith th dinat system
wi € coordinates () the components have exponential safety

F (t,U) = F(t.U) for t0<0,c0), function given by (14)-(15) with the intensity of
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departure A(u) from the safety state subset state subsefu,u+1...,zZ2 become less according to
{u,u+1l,...,7, the formula
(i) the components are independent,

then the multistate system safety function is gilwgn E[T ' (u)] = E[T. (u)] - 1 E[T (u)] = n-1 E[T ()]
the formula ' ! n ' n e

StD)=[,S{)....,S(t,z)], i=12,...,n, u=12...,z

where Generalizing, ifu,u = 012,...,n— 1,components of

the system is out of the safety state subset

St.u) = n-1 N 1 AT {u,u+1,...,7Z}, the mean values of the lifetimes
tu) = E U [1=expA(u)t]] T.'(u) in the safety state subst,u+1,...,7Z4 of the

system remaining components are given by

exp[-(n—-v)A(u)t]
, v n-u
E[T"(u)] = E[T, (u)] o ET (W] = e E[T; (u)]

=1-[1-exp[A(u)t]]" fort=0, u=1...,z

: , _ fori=212...,n,u=12...,z
Corollary 2. If in a homogeneous multi-state series

system

() the components have exponential safety
function given by (14)-(15) with the intensity of
departure A(u ) from the safety state subset

{u,u+l,...,.2,
(i) the components are independent,
then the multistate system safety function is gilgn

Hence, for the case when components have
exponential safety functions given by (14)-(15)hwit
the intensity of departurd(u from the safety state

subset{u,u+1,...,zZ}, according to the well known

relationship between the lifetime mean value is thi
safety state subset and the intensity of depaftane
this safety state subset of the form

the formula
S(t)) = [1.S¢D)..... St 2)], E[T (u)] :Tl) fori=12...n, u=12..,2
u
where ) ) -
we get the following formula for the intensities of
o (n departure from this safety state subset of the
S(t,u) = Z[Uj[l— exp[A(ut]]© remaining components
v=0
Oy =_ N
expl-(n - v)A(U)t ] AT(U) =~ A) (18)
=exp[-nA(u}t]fort=0, u=1...,z forv=0L2...,.n-L u=12...,z
4. Safety of multistate ‘m out of n” system Proposition 2 [11] If in a homogeneous multi-state
with dependent components “mout ofn” system
_ ., _ (i) the components have exponential safety
In a multi-state th out of n” system with dependent function given by (14)-(15),

components we may consider the dependency of thﬁi) the components are dependent
changes of their ageing safety states and asswuahe thjiiy the intensities of departure from the safety state
after changing the safety state subset by oneef th subsets of the components are given by (18),

system components to the worse safety state SubSghen the multistate system safety function is gibgn
the lifetimes of the remaining system components inne formula

this safety state subsets decrease. More exaodly, w

assume that if anyone of the system component gets S(t,) =[LStD...., St 2)], (19)
out of the safety state subgetu+1,...,z}, then the

safety of the remaining ones is getting worse 80 th \,hare

their mean values of the lifetimeg'(u ih safety
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S(t,u) = nim&
v=0 V.

“I)t]u exp-nA(u)t] (20)

fort=0,u=1...,2

Proof: We denote by N(t,u ), the number of

components that got out of the safety state subset
{u,u+1,...,Z up to the moment, t=0. Then the

number N(t,u) is a process with the states
012,...,n and the probability of its particular state
is given by

P, (t,u) = P(N(t,u) =v)
forv=012...,n,u=1...,z

The above definition and the formula (18) mean
that the procesaN(t,u )s a Markov process

with the transition rates

(n-i)—— A(u)
n-—i
AW ={=nA@), j=i+1
0, Lj#i+1i=04...,n,

i.e. with the following matrix of the transitiontes
between the states.

state 0 1 2 n-m n-m+1l ... N _
0 -nA(u) nA(u) o ... 0 0 0 0
0 -nA(u) nA(u) ... 0 0 0 0
n-m 0 0 0 ... -nA(u) nA(u) 0 0
n-m+1 0 0 o .. 0 -nA(u) nA(u) ... 0
n | 0 0 o .. 0 0 0 e T NAWU) e,

Since the M out of n” system is out of the safety
state subset{u,u+1...,zZ} if at least m its

components is in the reliability state subset
{u,u+1...,7, ie. the system is out of this safety

state subset when the proce¥4t,u) is at the state

n-m+1, then the statam—m+1 is the absorbing
state and the above matrix of transition ratessake
the following form
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state 0 1 2 n-m n-m+1 e N

0 -nA(u) nA(u) o .. 0 0 0O .. 0

1 0 -nA(u) nA(u) ... 0 0 o ... 0

n-m 0 0 0 ... -nA(u) niu) 0 .. 0 (21)
n-m+1 0 0 0 0 0 0O ... 0

n 0 0 o .. 0 0 0 .. 0 1w

Thus, the distribution function of the system et v=0L2...,.n—-m+1, of the process N(t,u )

in the state subsé¢t,u+1,...,2 is given by u=1...,z atthe moment =0 are given by
F(t,u) =P(T(u) <t) P, (Qu)=1P Ou)=0 (24)
=P(N{t,u)=n-m+1)=P__.(t,u) forv=212....,n-m+L u=1...,z
fort=0, u=1,...,z Applying Laplace’s transform to the system of

equations (23) with the initial conditions (24), we

and the suitable safety function component of thisobtain
system is of the form
SR (s,u) =1=-nAPR,(s,u)

S(t,u) =1-P__,(t,u) (22) sB(s,u) = nAR,(s,u) - nAP,(s,u)

fort=0, u=1..,z SP_.(s,u) =P, (s,u) ~nAP,_, (s,u)

n—-m-:

SP_,..(s;u) =nAP_. (s,u),

From the stochastic processes theory it follows tha
having given the matrix (21) of the transition gte
between the states, it is possible to find thewhere

probability P,_..,(t,u) from the following system )
of equations. P, (s,u) = [P, (t,u) exp[-st]dt
0

P, (t,u) = —nAP, (t,u) forv=12...,n-m+1,

P (t,u) = nAR, (t,u) —nAPR,(t,u) is a transform of the probabilityP,(t,u )f its
P, (t,u) = nAP,(t,u) — nAP, (t,u) 23 particular statey =12,...,n—-m+ 1.
: (23) Further, foru=1,...,z, we have

P_. (t,u)=nAP__ (t,u)—nAP__ (t,u)

n—-m-:

P_..(tu)=nAP_ (t,u) R(siu) :m
fort=0, u=1...,2 F’l(s,u)zﬁa(s,u)
It is supposed that all components of the analyzed ()
system at the beginning are in the state subset
{u,u+1,...,7z, and therefore at[ the momeht= 0 P (su)= nA(u) P (su)
the processN(t,u )u=1,...,z is at the state 0. It s+nA(u)
means that the probability of its particular states P (su)= nA(u) P (su)

s
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From this system of equations we conclude that thehe intensity of departure from this safety statieset

transforms of the probabilit?,_ .. (s,u &re equal equal tonA(u).
[nA(u)]™™? Corollary 4. If in a homogeneous multistate parallel
Pn_m+1(S, U) = oy ) foru=1,...,z, system
s+ nA(u)] (i) the components have exponential safety

functions given by (14)-(15),
which may be written in the form of the following (i) the components are dependent;

series (iif)  the intensities of departures of components from
the safety state subsets are given by (18),
1 nm  [nA(U)]Y then the system safety function is given by thearec
I:)n—m+1(s! U) =—-

S Jo[s+nA(u)]’? St)=[LStD...., St 2)],

foru=1...,z
where
After application of the inverse Laplace’s trangfior
to the above equation, we have
: -1[nA(u)t
S(t,u) = &exp[—n)l(u)t]
nA(u)t =0 U
P ) =1= S UL exprmig
fort=0, u=1...,z
fort=0, u —l...,

. Corollary 5. If in a homogeneous multistate series
Taking into account the last result and (22) we g tsystem
(20), which completes the proof. # () the components have exponential safety

. ) . functions given by (14)-(15),
From Proposition 2 we obtain the following (i)  the components are dependent;
corollary. (i)  the intensities of departures of components
, ) from the safety state subsets are given by

Corollary 3.1f in a homogeneous multi-staten‘out (18)
of n” system _ then the system safety function is given by thearec
() the components have exponential safety

functions given by (14)-(15), S(t,[) - [:L S(t ,l),, S(t, Z)],

(i) the components are dependent;
(i)  the intensities of departures of the components
from the safety state subsets are given by (18),
then the time of the system lifetime in the state
subset {u,u+1...,Z2  has the multi-state

distribution function given by the formula

where

S(t,u) =exp[nA(u)t] fort=0, u=1...,z

5. Safety of multistate ‘m out of I”-series

F@t)=[0F ¢,...,F (t2), (25) System
To define a fn out ofl” — series system, assume that:
where — kis the numberrh out ofI” subsystems of the
system,
m[nA (u)t] — | is the numbers of components of tme dut of
F(t,u)=1- Z exp[-nA(u)t]  (26) I” subsystems,
- E,i=12.%j=12.1L k| ON, are
fort=0, u= l"" components of the system,
_ o — all components&; have the same safety state set
Remark 1. According to the definition of Erlang’s as before {0,1,.2},
Slistributiorl, Corollary 3. means that, the multistate _ Tiu), i = 1,2,.k j = 1,2,..1, k, 1 ON, are
mout ofn” system lifetimeT (u) in the safety state random variables representing the lifetimes of
subset {u,u+1...,22, u=12...,z, can be components E; in the safety state subset
interpreted as the sum ofi-m+ independent {u,u+l...,7, while they were in the safety

random variables with exponential distribution with statez at the moment = O,
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si(t) is a componentE; safety state at the {u,u+1...,2 ifallits “m out of | ” subsystems are

momentt, t[J<0,), while they were in the
safety state at the moment = 0.

Definition 6.A vector

Sit.) = [S(t.0)S(t.1)....5(t2], (27)
t0<0,00), i=12,..kj=12,..1
where
Si(t.u) = P(s(t) 2 u | 5;(0) =2)
=P(Tjj(u) > 1), (28)

t0<0,00),u=0,1,..7,

is the probability that the componeBj is in the
safety state subsdtu,u+1,....z &t the moment,

t < 0,0), while it was in the safety stateat the
momentt = 0, is called the multistate safety function
of a componenE;.

The safety functions§i(t,u), t0<0,0), u =
0,1,...z, defined by (28) are called the coordinates of
the componenE;, i = 1,2,..k, j = 1,2,..l, multistate
safety function§;(t,l) given by (27). Thus, the
relationship between the distribution functib(t,u)
of the componer;, i = 1,2,..kj = 1,2,..1, lifetime
Tij(u) in the safety state subsgt,u+1...,Z} and
the coordinates;(t,u) of its multistate safety function
is given by

Fi(t,u) = P(Ty(u) < 1) = 1 -P(Ty(u) >1)
=1 §(tu), t0<0,0), u=0,1,..2

Definition 7. A multistate system is called ami’ out
of | "-series system if its lifetimd(u) in the safety
state subsef{u,u+1,...,z is given by

T(u) = rlgirkl'l'i(l_mﬂ) (W, m=12...l,u=1.2,.2,

whereTi(I_

the set of random variables

T, (u), i=12..k u=12..,z

mepy (U) @T€ thel — m+ 1order statistics in

Ta(W), T (W), -y

in this safety state subset. In this definitiodenote
the numbers of components in then“out of |”
subsystems. The numbeks mand| are called the
system structure shape parameters.

Definition 8. A multi-state ‘m out of n"-system is

called homogeneous if its componeis have the
same safety function

S, tP=[LS, ¢D..... S, ¢ 2)]

fort0<0,0),i =12,....k, j =12,... .1,
with the coordinates

S, (t,u) = S(t,u) for t0< 0,0),

u=12...,z,i=212...k, j=12... .l

From Proposition 1and Corollary 2, we have the
following propositions.

Proposition 3.[10] If in a homogeneous regular
multi-state ‘m out ofl”-series system

(i) the components have exponential safety
function given by

S tX=LS ¢D.....S t 2)] (29)

fort0<0,00),i =12,...,k, ] =12,... .1,
where

1 t<0
: _|exp[-A(u)t],

S, (t.u) = S(t,u) = (30)

t20,A(U)20,i =12,....k,
i=12,..)

with the intensity A(u) of departure from the safety
state subsdtu,u +1,...,7},

(i) the components are independent,
then the multistate system safety function is gilbgn
the formula

The above definition means that the multi-state

“m out of |”-series system is composed &f
subsystems that are multi-statem* out of |”
systems and it is in the safety state subse
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SE) =[S, St 2] 31
where
-nf |
SGAD=E§1PJH—6XDPAODH]“ (3»

t
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exp[=(l - v)Au)t]] then the multistate system safety function is gilgn
the formula
fort20, u=1....z ) = [LSED..... St 2)], (34)
6. Safety of multistate ‘m out of I"-series where
system with dependent components
We assume similarly as in Section 4 that if [I/l(u)t]
v,0 = 012,...,1 -1, components of eachi out ofl” S(t,u) = [Z expHA(u)t]] (35)

subsystems of the system is out of the safety state
subset {u,u+1...,Zt, the mean values of the {5 t>0 u=1..,z

lifetimes T,'(u) in the safety state subset
{uu+1,...,2 of this subsystem remaining 7. Modelling system variable operation

components are given by conditions
We assume that the system during its operation
E[T, " (u)] = E[T, (u)] _Y E[T, (u)] process is takiny, v U N, different operation states
z,2,,...,2,. Further, we define the system
=I_I—UE[Tij ()] operation proces<(t), t[0<0+), with discrete
operation states from the set{z,z,,...,z, }
for j=12...),u=12,.. Moreover, we assume that the system operation

proces<Z(t) is a semi-Markov process [1]-[6], [10]-
Hence, for the case when subsystem componentd3] with the conditional sojourn timeé,, at the
have exponential safety functions given by (29)}(30 operation statesz, when its next operation state is
with the intensity of departurd(u) from the safety 2, b1=12,.v, b#l. Under these assumptions,
state subsef{u,u+1,...,z, according to the well

the system operation process may be described by:
knotvr\:n relalitl(?[nsh[[ptbetweben tthe “(;et"[Lne m(taan \{aluef the vector of the initial probabilities
in this safety state subset an e intensity o 0,(0)=P(Z(0)=2), b=12..v, of the system

departure from this safety state subset of the form ] ] ) ]
operation proces&(t) staying at particular operation

states at the momeht=0
E[Tij(U)]_m forj—1,2 ,, u:l,2,...,Z,
[p, ©)],, =[P, ), p,(0),...,p, O)]; (36)

we get the following formula for the intensities of
departure from this safety state subset of the the matrix of probabilitiesp,, b,1=12..

subsystem remaining components bzl, of the system operation procesZ(t)
transitions between the operation statgsand z,
AY (u) =||—/](u) forv=012...,1-1, (33)
u=12,...,z.U P Piz - Py

[ ] p21 p22 e p2v
From Proposition 2and Corollary 3, we have the Porluy = :
following propositions.

(37)

pvl pv2 pvv
Proposition 4]11]
If in a homogeneous multi-staten“out of I"-series  where by formal agreement
system
(i) the components have exponential safety p, =0 forb=12,..
function given by (29)-(30),
(i) the components are dependent, . . C .
(iii) the intensities of departure from the safety state the matrix of condltE)nal distribution  functions
subsets of the components are given by (33), H, () =P, <t), bl=12..v, b#l, of the
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system operation procesqt) conditional sojourn
times g, at the operation states

Hll(t) HlZ(t) e HlV (t)

[, (0], =| 2O =0 Ha 0

Hvl(t) HVZ(t) HVV (t)

(38)

where by formal agreement

H, (t)=0for b=12,...v.

We introduce the matrix of the conditional density Py

functions of the system operation proceza&)
conditional sojourn timedJ,, at the operation states

corresponding to the conditional distribution
functionsH, (t)
hy, (t) hy,(t) ... hy, (t)
(L, <| O h0- O] 39
where

h, (t) =%[Hbl )] for bl =12,....v, b#1,

and by formal agreement

h,(t)=0for b=12,...,v.

The mean values of the conditional sojourn tirfles
of the system operation proceX$) are given by

M, = E[6,]=[tdH,, (t) = [th, (t)dt, (40)

bl =12,..,v, b#]l.

From the formula for total probability, it followthat
the unconditional distribution functions of the

sojourn times Hb, b=12,..,v, of the system
operation proces«(t) at the operation states ,
b=12,...v, are given by [1]-[6], [10]-[13]

Hb(t) = lipmHm (t), b=12,...v. (4]_)

83

Hence, the mean valuek[d, of the system
operation procesZ(t unconditional sojourn times
6,, b=12,...,v, at the operation states are given by
M, =E[6,] = pr,Mb, ,b=12..yv, (42)
whereM,, are defined by the formula (40).

The limit values of the system operation process
Z(t) transient probabilities at the particular

operation states
) =P@Z(t)= z),t0<0+x), b=12,...,v,
are given by [1]-[6], [10]-[13]

M
P, = lim Py (1) = 5~

(43)

b=12,...v,

where M, , b=12,...,v, are given by (42), while the
steady probabilitiesz, of the vector[rz],,, satisfy
the system of equations

[77,]=[7,][ Pyl

in =1 (44)

In the case of a periodic system operation process,
the limit transient probabilitiesp,, b=12,...,v, at

the operation states defined by (43), are the terg
proportions of the system operation procesg )

sojourn times at the particular operation stargs
b=12,...,v.

8. Safety of multistate system at variable
operation conditions

We assume that the changes of the system operation
processZ(t) states have an influence on the system
multistate component&, i =12,...,n, safety and

the system safety structure as well. We mark by
T(u), T®(u), ....T®(u) the system components
E.E,,... E, conditional lifetimes in the safety
states subsefu,u+1....z ,}u=12...,z, and by
T®(u) the system conditional lifetimes in the safety
states subsefu,u+1...,z ,}u=12,...,z, while the
system is at the operation sta®g, b=12,...v.
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Further, we define the conditional safety functadn  conditional probability that the system lifetime

the system multi-state componeft, i =12,...,n, T®(u) in the safety state subs@t,u+1,...,z i$
while the system is at the operation stategreater thant, while the proces<Z(t) is at the
z,,b=12,...,v, by the vector [7]-[10], [17]-[20] operation statez, .

Consequently, we mark byT(u) the system
[S & 0 =[L,[S D], ...[S ¢ 2]], (45)  unconditional lifetime in the safety states subset
{u,u+1,....7Z}, u=12,...,z, and we define the system
where unconditional safety function by the vector

[S ¢,u)]® =P(T® (u) >t|Z(t) =z) (46) SthH=1[1, S¢JD...., S(t,z)], (49)

for t0<0,00), u=12,...,2zb=12,..v, and the Where
conditional safety function of the multistate syste

while the system is at the operation statg, S(tu) = P(T(W) >1) for tH< 0,e), (50)
b=12,..,v, by the vector [7]-[10], [17]-[20] u=12..2

[StOI®=[1, [SEDI?, ..., [S(t 2], (47)  In the case when the system operation timis

large enough, the system unconditional safety
where function is given by [33], [50]
® — p(T® - v

[S(t, U)] P(T (U) > t|Z(t) Zb) (48) S(t, U) Dbzz*i pb[S(t,U)](b) (51)
for t0<0,0), u=12,...,z, b=12,..V.
The system conditional lifetimes fort=0,u=12...z

T®(U) =TT (u), T2 (u),... T2 (u)) where[S(t,u)]®”, u=12,...,z.b=12,...,v, are the

coordinates of the system conditional safety
at the operation statesz, defined for functions defined by (47)-(48) anp,, b=12,...,v,
u=12..z b=12..v, nON, are dependent on are the system operation process limit transient
the system components conditional lifetinie® (u), probabilities given by (43).
(®) ®) i
T,” (u), ....T.”’(u), at the operation state and the 9. Safety of multistate ‘m out of |

coordinates of the system conditional multistate»_ garies system at variable operation

safety functions conditions

[S(t,u)]® From Proposition 1and Corollary 2, we have the

-[S(S. (t,u)]('“’,[SZ(t,u)](b’,...[S L) following propositions.

Proposition 5.[11] If in a homogeneous regular
at the operation state z, defined for multi-state ‘m out of n"-series system operating at

t0<0,0),u=12,..,z,b=12,..v, nON, are Vvarableconditions _
depe.ndent on the components conditional safet)") 1Ezﬁctigr?rgif)/g?1et?;s have —exponential  safety
function [S t,W)]®, [S,tw1®, ..[S u)]®at

the operation state, . [S, 0¥ =[1,[S, LDIV, ... [S, L 2]"] (52)
The safety function[S, (t,u)]® is the conditional

probability that the componer, lifetime T, (u) in fort<Q,),i=12...k j=12...,

the safety state subsfat,u+1,...,z i§ greater than

while the proces<(t) is at the operation stazg.

where

Similarly, the safety function [s(t,u)]”is the
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1, t<0
exp[-{A(u)]”1],
t20,[AU)]® 20,i =12,...,k,
j=12,...1

[S, t.ul® = (53)

with the intensity of departurg¢A(u)]® from the
safety state subséti,u+1,...,7},

(i) the components are independent,
then the multistate system safety function is gilgn
the formula

StD=[1StD.....S(t 2], (54)
where
v -ny |
SG¢0=Eiﬁiéi?jﬂ—expﬁbKUH“”H“
exp[~(I = )[AW)]® 11", (55)

t=0,u=1...,z

Proposition 6. [11] If in a homogeneous multi-state
“m out ofn"-series system

(i) the components
function given by (52)-(53) with the intensity
[A(W]® of departure from the safety state
subse{u,u+1,...,7},

(i) the components are dependent,

(i) the intensities[A(u)]® of departure from the

10. Safety of an exemplary critical
infrastructure

We consider a parallel-series system composed of
componentsEij , 1=123 |j=12,...,36 0perating at

three operation stateg, z, andz,, i.e.v =3 We

assume that the system safety structure and the
system components’ safety characteristics are
changing at the various operation states.

At the operation state, the system is composed

of one “24 out of 36" subsystem composed of

componentsEij , 1=1 j=12,..36. with the safety
structure presented Figure 2

— ElZ —

| |

| |

| |

| |

| |

L E13€ —

have exponential safetyrigure 2 The scheme of the “24 out of 36” system

safety structure at the operation state

At the operation state, the system is composed of
two “24 out of 36" subsystems linked in series and
composed of components, , i =12, j=12,...36,

ij !

safety state subsets of the components at theith the safety structure presentedrigure 3.

operation stateg, are given by (33), i.e.
(iv)
O @1 =[]
-v

foro=012,....1-Lu=12,...,z2

then the multistate system safety function is gilbgn
the formula

St =[Ls¢D..... St 2)], (56)
where

S = § p(SLOID

exp[-I[A(u)] 1] (57)

fort=0,u=1...,2
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— B [ — Ea [
— Eiz [ — Ex [
1 Eiz | — Exx [
| | | |
| | | |
I " I I " I
| | | |
| | | |
L Eise — L Eose —

Figure 3. The scheme of the “24 out of 36"-series
system safety structure at the operation state

At the operation state, , the system is composed of

three “24 out of 36” subsystems linked in seried an
composed of components E,, i =123
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j =12,...,.36, with the safety structure presented in

Figure 4
— Eu [ — Ea [ — Ea [
] E12 | | E22 | ] E32 1
— Bz [ — Exz [ — Eas: |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
L Eize — L Eose — L Ease —

Figure 4.The scheme of the “24 out of 36"-series
system safety structure at the operation state

We arbitrarily assume that the transient probaddit
of the system at particular operation staes z,

and z, respectively are

p, =02 p,=04 p,=04

i=12 j=12,..36
with the exponential coordinates
[S, t,u)]® =exp[-2ut], u=123 i=12
i=12,..36,

and the four-state safety functions of the system
components E,, i=123 j=12..36 at the

operation statez, in the form of the vector

[S; (t.01%
=[LIs, @D]1?.[S t.2)]7, [S, ©.3)17],

=123 j=12,...36,
with the exponential co-ordinates
[S, (t,w)]® =exp[-3ut], u=123 i=123

j=12,..36.

Moreover, we distinguish four safety states of theSince the shape parameters of the considered ‘24 ou

system components 0, 1, 2, 3, iz= 3, and we fix
that the critical safety state is= 2. Consequently,

we define the four-state safety functions of the

system componentEij , 1=1 j=12..36, atthe
operation statez, in the form of the vector

[S, (6,01
=[L.[s, @DI7.[S; @217, [S; ©.3)1°],

i=1 j=12,..36
with the exponential coordinates
[S, (t,u)]® =exp[-ut], u=123 i=1

j=12,...36,

of 36" system are:

-k® =1 19 =36, m® =24, at the operation state
z,

- k® =2 1?9 =36 m® =24, at the operation state
z

21

- k® =3
statez,,

|® =36, m® =24, at the operation

then applying directly the formulae (56)-(57), get
the system safety function

and the four-state safety functions of the system

components E i=12, j=1212..36, at the

operation statez, in the form of the vector

i

[S, (t.01
=[L[S eDI?.[S; 1217, [S; t.3)]?],
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S(t,h) =[1 S, St.2), St3)], t=0, (58)
where

S(t,u)

7 pl "5 A ooy

= 0.21223mexp[—36ut]
v=0 !



Journal of PolishSafety and

Reliability Association

Summer Safety and Reliability Seminafelume 3, Numberl, 2012

s o.4[§;—[723t]u expl-72ut])?

[1081t]

+04] 2 exp[-10aut]]®

(59)

fort=0,u=123.

The approximate graphs of the coordinates of the
complex rope system safety function are presemted i

Figure 5 H

1
S{tu)

0.

() =1- S(,2)

=1- 022 [72t] exp[-72t]

04[2[144] expl-144])?
—04[2[216] exp[-214]]® (64)
ence, by (13), the moment when the system risk
function exceeds a permitted level, for instadce
05, is

r=r"(J L 0.066. (65)

f

03 0.4 05

Figure 5 The graph of the exemplary critical
infrastructure safety functiors(t,[) coordinates

The expected values and standard deviations of the

1
i}

09
05 rt)
07
06
05
04
03
032

01

o

o 01 02 03 04 £t 05

system unconditional lifetimes in the safety state
subsets {123}, {23}, {3}, calculated from the
results given by (58)-(59), according to (7)-(9),
respectively are:

(1) £0.169,0(1) [ 0011, 60) [1]
£(2) £ 0.0850(2) [ 0.003 (61)
4(3) £0.056,0(3) C 0. 001 62) &

and further, considering (11) and (60)-(62), theame
values of the unconditional lifetimes in the partas
safety states 1, 2, 3, respectively are:

[3]

AQ)=p@) - u(2)=0084

_ [4]
A(2)=u(2) - ) =0.029
7(3) = u(3) = 0.056. (63)

Since the critical reliability state is= 2, then the [5]
system risk function, according to (12), is given b
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Ei

igure 6. The graph of the exemplary critical

infrastructure risk functiorr (t)
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