
Journal of Polish Safety and Reliability Association 
Summer Safety and Reliability Seminars, Volume 1, Number 1, 2012 

 

 59 

1. Introduction 
 

The main issue of today’s system reliability analysis 
is evaluation of more than two reliability states 
systems with changing their reliability structures 
and their components reliability parameters at the 
varying in time the system operation states [2]-[16]. 
Examples of such complex technical systems in real 
world for instance are energy generation and 
transmission systems, telecommunication systems, 
piping transportation systems of various substances 
and maritime transportation systems. Using 
the traditional analytical techniques is sometimes 
difficult to implement in the reliability analysis, 
modeling, prediction and optimization of those 
complex technical systems.  
The Monte Carlo simulation method [18] applied 
to those problems can provide their approximate 
solutions in a relatively small amount of time. 
It allows examining the reliability of complex 
technical systems sampled in a number of random 
configurations in scientific computing. Taking into 
account the importance of reliability of complex 
multistate [17] technical systems in practice, 
the analysis is supported with a direct application 
to a port oil transportation system operating at one 
of the Baltic oil terminals. 
 

2. System operation process 
 

The operation processes of most real technical 
systems are very complex because of the large 
numbers of their operation states and the random 
transitions among them and the random sojourn 
lifetimes at them. To solve this complexity, the 
models of systems’ operation processes can be 
constructed using semi-Markov processes [1] 
proposed in this section. 
 
2.1. System operation process modeling 
and  identification 
 

We consider a multistate system operation process 
),(tZ  ),0 +∞〈∈t  with v , Nv∈ , distinguished 

discrete operation states from the set 
 
   },...,,{ 21 vzzzZ =  
 
with the conditional sojourn times blθ  at the 

operation states bz  when its next operation state is 

lz , ,,...,2,1, vlb = lb ≠ . We assume that ),(tZ  is 
a semi-Markov process [1] and therefore, the 
sojourn times at the operation states may have 
arbitrary probability distributions [11]. 
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Let Θ  be the duration time of the experiment. 
Furthermore, we denote by )0(n  the realisation of 
the total number of the system operation process 
stay at the particular operation states at the initial 
moment 0=t  and by ,)]0([ 1 vbn × ,,...,2,1 vb =  the 
vector of realisations of the numbers of the system 
operation process transitions in the particular 
operation states bz  at the initial moment 0=t . In 

addition, we denote by bln  the realization of the 
numbers of the system operation process transitions 
from the state bz  into the state lz , 

,,...,2,1, vlb = lb ≠  and the realisation of the total 
numbers of the system operation process transitions 
from the operation state bz  as bn , .,...,2,1 vb =  
Consequently, the semi-Markov model can be 
described and identified using the following 
parameters and their evaluations: 
 
- the vector ,)]0([ 1 vbp ×  of the initial probabilities 

of the system operation process )(tZ  at the 
moment 0=t , 
 
   )],0(),...,0(),0([)]0([ 211 vvb pppp =×  
 
where 
 

   ,
)0(

)0(
))0(()0(

n

n
zZPp b

bb === vb ,...,2,1= ; 

 
- the matrix vvblp ×][  of the probabilities of the 

system operation process )(tZ  transitions 

between the operation states bz  and lz , 
,,...,2,1, vlb =  lb ≠  
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where  
 

   
b

bl
bl n

n
p = and 0=bbp  for vb ,...,2,1= ; 

 
- the matrix of the conditional distribution 

functions 
 
   ),()( tθPtH blbl <=  ,,...,2,1, vlb = lb ≠  
 

of the system operation process )(tZ  conditional 

sojourn times blθ  at the operation states 
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where 0)( =tHbb  for ,,...,2,1 vb =  and the 
remaining ones can be estimated using 
the suggested suitable distributions and statistical 
methods given in [11]. 
 

Since, very often, we do not have numerous times 
of realisation then we assume that the suitable 
distributions describing the system operation  
process )(tZ  conditional sojourn times blθ  are  
the chimney distributions with the density functions 
of the form [11]: 
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where  
 

+∞<≤≤≤≤ blblblbl yzzx 210 , 0,, ≥blblbl DCA . 
 
The corresponding distribution function )(tHbl  

of   the conditional sojourn time blθ  takes 
the  following form 
 

   ds.shtH
t

blbl ∫=
0

)()(  

 
2.2. Parameters identification of port oil 
piping transportation system operation 
process 
 

The oil piping transportation system under 
consideration is designated for reception, sending 
and storage the oil products such us petrol and oil. 
The terminal is composed of three parts (A, B, C) 
linked by three subsystems1S , 2S  and 3S . The first 
and second are the series-parallel subsystems, each 
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containing two pipelines, and the last one is 
“2 out of 3” subsystem [11]. The system scheme is 
shown in Figure 1. 
 

 
 

Figure 1. The scheme of a port oil transportation 
system. 
 
The subsystem 1S  consists of 2=k  identical 

pipelines, each composed of 178=l  components: 
- 176 pipe segments,  
- 2 valves.  
The subsystem 2S  consists of 2=k  identical 
pipelines, each composed of 719=l  components: 
- 717 pipe segments,  
- 2 valves.  
The subsystem 3S consists of 3=k , pipelines,  two 
pipelines of the first type and one of the second type, 
each of them  composed of 362=l  components: 
- 360 pipe segments,  
- 2 valves. 
Taking into account the expert opinion, there are 
distinguished 7=v  operation states shown in the 
table below. 
 
Table 1. List of operation states. 
 

State Medium Activity Pipelines Subsystem 

1z  1 kind CB →  2 out of 3 3S  

2z  1 kind BC →  1 out of 3 3S  

1 out of 2 1S  
3z  1 kind PierB

A

→  1 out of 2 2S  

1 out of 2 1S  

1 out of 2 2S  4z  1 kind CPier
BA,

→  
2 out of 3 3S  

1 out of 2 1S  
5z  1 kind BPier

A

→  1 out of 2 2S  

1 kind CB →  2 out of 3 3S  

1 out of 2 1S  6z  
1 kind BPier

A

→  1 out of 2 2S  

1 kind CB →  1 out of 3 3S  
7z  

1 kind BC →  1 out of 3 3S  

Using the procedure and formulas given in section 
2.1., we determine the empirical parameters  
of the conditional sojourn times blθ  at the operation 

states .bz  On the basis of statistical data coming 
from experts, during the experiment time 329=Θ  
days which is 0.901 year, the unknown parameters 
are evaluated as follows [11]: 
 
- the number of the pipeline system operation 

process realizations  
 
   41)0( =n ; 
 

- the realizations  
 
   ,14)0(1 =n  ,2)0(2 =n  ,0)0(3 =n  ,0)0(4 =n  

   ,9)0(5 =n  ,8)0(6 =n  ,8)0(7 =n  
 
of the numbers of staying of the system operation 
process respectively at the operation states 

1z , 2z ,…, 7z  at the initial moments 0=t ; 
 

- the vector of realisations 
 
   ],19.0,19.0,23.0,0,0,05.0,34.0[)]0([ 1 =×vbp     
(1) 
 
of the initial probabilities ),0(bp ,7,...,2,1=b   
of the pipeline system operation process stay  
at the particular states bz  at the time 0=t ; 
 

- the matrix 
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0000001

8.0000002.0

311.0111.0534.00022.0022.00

][ blp (2) 

 
of the probabilities of the system operation 
process transitions between the various operation 
states; 
 

- the empirical distribution functions of the system 
operation process )(tZ  conditional sojourn  

times blθ , ,7,...,2,1, =lb  measured in hours, 

at the operation states 1z , 2z ,…, 7z  are as 
follows  
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The remaining distribution functions, besides  
of those for which lb = , could not be evaluated 
because of the lack of data. 
 
3. Complex technical system reliability 
 

Taking into account the importance of the safety  
and operating process effectiveness of real technical 
systems it seems reasonable to expand the two-state 
approach to multi-state approach [2]-[17] in their 
reliability analysis. The assumption that the systems 
are composed of multi-state components with 
reliability states degrading in time [11] gives 
the possibility for more precise analysis of their 
reliability and operation processes effectiveness.  
To be able to apply practically the general joint 
models linking the multistate systems reliability 
models with the models of their operation processes 
to the evaluation the reliability of real complex 
technical systems it is necessary to use the statistical 
methods concerned with determining unknown 
parameters of the these models [11]. Particularly, 
the unknown parameters of the conditional 
multistate reliability functions of the system 
components at the various operation states should be 
identified. It is also necessary to have the methods of 
testing the hypotheses concerned with the 
conditional multistate reliability functions of the 
system components at the system various operation 
states. 
 
3.1. System and its components reliability 
modeling and identification  
 

In multistate reliability analysis, to define the system 
with degrading components we assume that its 
reliability states may be changed in time only from 
better to worse [11]. Then, the multistate reliability 
function of a component iE , ,,...,2,1 ni =  can be 
defined by the vector [11]  
 
   )],,(),...,1,(),0,([),( ztRtRtRtR iiii =⋅  
 

where the coordinates  
 
   ),)(())0(|)((),( tuTPzEutEPutR iiii >==≥=  
 
for ),0 +∞〈∈t , ,,...,2,1 ni = , ,,...,2,1 zu =  
 
are the reliability functions defined as the probability 
that the component iE is in the reliability state subset 

},...,1,{ zuu +  at the moment t , ),0 +∞〈∈t , while it 
was in the reliability state z  at the moment 0=t  
and )(uTi  is the component iE  lifetime in this 
subset of reliability states. 
Further, we assume that the system components 
at the system operation states bz , ,,...,2,1 vb =  have 
the exponential reliability functions, i.e.  
 

   ])]([exp[)],([ )()( b
i

b
i uλutR −=  

 
for ),0 +∞〈∈t , .,...,2,1 zu = , vb ,...,2,1= . 
 
The approximate data on system reliability 
components estimating the unknown parameters 
on the basis of expert opinion are used in case as we 
do not have the statistical data. Mainly, the mean 
values 
 

   )]([)]([ )()( uTEuµ bb = , ,,...,2,1 zu =  ,,...,2,1 vb =  
 

of the system component lifetimes )()( uT b , 
zu ,...,2,1= , ,,...,2,1 vb =  in the reliability state 

subset  },...,1,{ zuu +  while the system is at the 

operation state bz  are estimated by experts. Further, 

we estimate the values )()](ˆ[ buλ  of the components 
unknown intensities of departure from the reliability 
state subsets },...,1,{ zuu +  using the following 
formula 
 

   ,
)](ˆ[

1
)](ˆ[)]([ )(

)()(
b

bb

uµ
uλuλ =≅                            

(3) 
 
for ,,...,2,1 zu =  .,...,2,1 vb =  
 
The selected for further considerations,  
the exemplary multistate system reliability structures 
in the reliability state subset },...,1,{ zuu +  are given 
in Table 2. 
The numbers lkm ,,  are called the system structure 
shape parameters. 
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Table 2. Selected reliability structures 
 

Structure Scheme Lifetime 
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3.2. System reliability at variable operation 
conditions 
 

In reliability analysis of complex systems  
at the variable operation conditions we assume that 
the changes of the system operation process )(tZ  
states have an impact on the system’s components 
and its structure. 
We denote the conditional multistate reliability 

function )()],([ b
i tR ⋅  of the system component 

iE , ,,...,2,1 ni =  while the system is at the operation 

state bz , ,,...,2,1 vb =  by a vector 
 

   ],)],([,...,)]1,([,1[)],([ )()()( b
i

b
i

b
i ztRtRtR =⋅  

 
where 
 

    ),)(|)(()],([ )()(
b

b
i

b
i ztZtuTPutR =>=  

 
for )∞+∈ ,0t , zu ,...,2,1= , ,,...,2,1 vb =  and 

)()( uT b
i  is the component iE  conditional lifetime in 

the subset of reliability states },...,1,{ zuu +  while 

the system is at the operation state bz , .,...,2,1 vb =  
Similarly, the conditional reliability function 
of  the  system at the operational state bz , 

,,...,2,1 vb =  is defined by a vector  
 

   ],)],([,...,)]1,([,1[)],([ )()()( bbb zttt RRR =⋅  
 

where ),)(|)(()],([ )()(
b

bb
n ztZtuTPut =>=R  for 

),0 +∞〈∈t , ,,...,2,1 zu = ,,...,2,1 vb = Nn∈  and 

)()( uT b  is the system conditional lifetime in the 

subset of reliability states },...,1,{ zuu +   while the 

system is at the operation state bz , .,...,2,1 vb =  
Under the above definitions, the unconditional 
reliability function of the system is given by 
 
   )]],,([)],...,1,([,1[),( zttt RRR =⋅  
 
where ),)((),( tuTPut >=R  for ),0 +∞〈∈t , 

,,...,2,1 zu =  and )(uT  is the unconditional lifetime 
of the system in the reliability state subset 

},...,1,{ zuu + . 
In the case when the system operation time θ  is 
large enough, the coordinates of the unconditional 
reliability function of the system are given by [11] 
 

   ∑
=

≅
v

b

b
b utput

1

)( ,)],([),( RR                                (4) 

 
for ),0 +∞〈∈t , ,,...,2,1 zu = , where ,bp  

,,...,2,1 vb =  are the system operation process limit 
transient probabilities [11]. 
Further, for ,ru =  if r  is the system critical 
reliability state, then the system risk function is 
given by [11] 
 
   ),,(1)( rtt Rr −=                                              (5) 
 
for ),0 +∞〈∈t  and if τ  is the moment when the 

system risk function exceeds a permitted level δ , 

then if )(1 t−r  exists we have 
 

   )(1 δτ −= r ,                                                      (6) 
 
where )(1 t−r  is the inverse function of the risk 
function )(tr . 
 
3.3. Port oil transportation system 
components reliability identification 
 

Based on expert opinion, there are distinguished 
three ( 2=z ) reliability states [11]: 
- a reliability state 2 – piping operation is fully 

safe,  
- a reliability state 1 – piping operation is less safe 

and more dangerous because of the possibility of 
environment pollution,  

- a reliability state 0 – piping is destroyed.  
The components of subsystems vS , ,3,2,1=v  have 
reliability functions 
 

   )]],2,([,)]1,([,1[)],([ )()()()( tRtRtR v
ij

bv
ij

v
ij =⋅  
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with the exponential coordinates of the form 
 

   ],)1(exp[)]1,([ )()( tλtR v
ij

v
ij −=  

   ].)2(exp[)]2,([ )()( tλtR v
ij

v
ij −=  

 
The approximate evaluation of the unknown 
intensities of departure of components results from 
formula (3). 
The reliability parameters of each pipeline 
components of the port oil transportation system 
based on the data coming from experts are given 
in Table 3 [11]. 
 
Table 3. Reliability parameters 
 

Subsystem Coordinate Components Intensity 
2,1=i  

176,...,2,1=j  0.0062 
)]1,([ )1( tRij  

2,1=i  
178,177=j  0.0167 

2,1=i  
176,...,2,1=j  0.0088 

1S  

)]2,([ )1( tRij  
2,1=i  

178,177=j  0.0182 

2,1=i  
717,...,2,1=j  0.0062 

)]1,([ )2( tRij  
2,1=i  

719,718=j  0.0166 

2,1=i  
717,...,2,1=j  0.0088 

2S  

)]2,([ )2( tRij  
2,1=i  

719,718=j  0.0181 

2,1=i  
360,...,2,1=j  0.0059 

)]1,([ )3( tRij  
2,1=i  

362,361=j  0.0166 

2,1=i  
360,...,2,1=j  0.0074 

3S  
pipeline 
of the 1st 

type 
)]2,([ )3( tRij  

2,1=i  
362,361=j  0.0181 

3=i  
360,...,2,1=j  0.0071 

)]1,([ )3( tRij  
3=i  

362,361=j  0.0166 

3=i  
1, 2, ,360= …j  0.0079 

3S  
pipeline 
of the 2nd 

type 
)]2,([ )3( tRij  

3=i  
362,361=j  0.0181 

 

4. Monte Carlo approach to system reliability 
evaluation 
 

The Monte Carlo simulation uses randomly 
generated numbers to calculate approximate 
solutions of a given problem. In this article the 
native C# method NextDouble() was used for all 
calculations and each generated sequence of 
numbers from 0 to 1 was converted into time. 
Moreover, the lifetime of a complex system was 
determined and the failures were identified. 
 
4.1. Monte Carlo simulation application 
to port oil transportation system reliability 
evaluation 
 

The algorithm of Monte Carlo simulation for the 
reliability evaluation of the port oil piping 
transportation system is presented in Figure 2.  
 
The first step is to define the initial operation state 

)(gzb , ,7,6,5,2,1=b  using the formula 
 


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7

6

5

2
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gz

gz

gz

gz

gz

gzb  

 
where g  is a randomly generated number between 0 
and 1. We can observe that according to (1), the port 
oil transportation system does not occupy the 
operation states 3z  and 4z  at the initial moment 

,0=t  as the probabilities of staying in these 
operational states are equal to 0. 
The next operation state lz , ,7,...,2,1=l  is 

generated, according to (2), from )(gzbl , 
,7,6,5,2,1=b  defined as 

 

   









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Figure 2. Monte Carlo algorithm for piping system 
reliability 
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For instance, if 1)( zgzb = , then the next operation 

state would be 2z , 3z , 5z , 6z  or 7z  generated from 

)(1 gz l . 
To apply the Monte Carlo method we assume that 
the particular conditional sojourn times at the 
operation state bz , ,7,...,2,1=b  are randomly 

generated using the inverse functions )(ˆ Hθbl  of the 

empirical distribution functions )(tHbl  defined in 
subsection 2.2. This way, the empirical conditional 
sojourn times measured in hours are as follows 
 

   ,960)(1̂2 HHθ =   
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where H  is a randomly generated number between 
0 and 1. 
The system conditional lifetimes in the reliability 
states subsets },...,1,{ zuu +  are approximated using 
exponential sampling formula 
 

   ),1(
)(

1
)(

)(
gln

uλ
uT

vij

ij

−−=  

 

where )()( uλ v

ij
, ,,...,2,1 vi =  is the intensity 

of the subsystem vS , ,3,2,1=v  given in Table 3,  

g  is a randomly generated number from 0 to 1. 
The lifetime of the system is counted according to 
the formula given in Table 2. 
In this paper we will focus on the multistate 
approach in the reliability analysis by the 
assumption that the reliability state 1 is a critical 
one. More general approach will be discussed in the 
future papers. The simulation was made with 1000 
runs. The results for the generated operational states 
are presented in Table 4. The initial operation state 
is 5z . The histogram of the pipeline system lifetime 
is presented in Table 5 and illustrated in Figure 3. 
 
Table 4. Comparison of tries and failures 
 

State No of transitions No of failures 
12 1098 0 
13 1047 0 
15 26923 10 
16 5545 1 
17 15481 3 
21 924 0 
27 3759 0 
31 1047 3 
47 1239 3 
51 25468 275 
52 1204 1 
54 1239 0 
56 12307 52 
57 12089 241 
61 2443 6 
65 17263 111 
67 6091 30 
71 20569 73 
72 2382 0 
75 8367 126 
76 7064 65 

 

 
 

Figure 3. Graph of the histogram of the pipeline 
system lifetime 
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Table 5. Histogram of the pipeline system lifetime 
 

No jx  jy  jn  )1,(tf  

1 4.70 782.88 207 0.207 
2 782.88 1561.06 148 0.148 
3 1561.06 2339.24 120 0.120 
4 2339.24 3117.41 99 0.099 
5 3117.41 3895.59 79 0.079 
6 3895.59 4673.77 66 0.066 
7 4673.77 5451.95 44 0.044 
8 5451.95 6230.13 39 0.039 
9 6230.13 7008.30 34 0.034 
10 7008.30 7786.48 22 0.022 
11 7786.48 8564.66 32 0.032 
12 8564.66 9342.84 15 0.015 
13 9342.84 10121.02 19 0.019 
14 10121.02 10899.20 11 0.011 
15 10899.20 11677.37 13 0.013 
16 11677.37 12455.55 16 0.016 
17 12455.55 13233.73 6 0.006 
18 13233.73 14011.91 8 0.008 
19 14011.91 14790.09 5 0.005 
20 14790.09 15568.26 2 0.002 
21 15568.26 16346.44 3 0.003 
22 16346.44 17124.62 2 0.002 
23 17124.62 17902.80 3 0.003 
24 17902.80 18680.98 2 0.002 
25 18680.98 19459.15 0 0 
26 19459.15 20237.33 1 0.001 
27 20237.33 21015.51 1 0.001 
28 21015.51 21793.69 0 0 
29 21793.69 22571.87 0 0 
30 22571.87 23350.04 0 0 
31 23350.04 24128.22 0 0 
32 24128.22 24906.40 1 0.001 

 
After analyzing and comparing the histogram with 
the graph of exponential distribution function 
 

   




≥−
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=
,0],)1(exp[)1(

0,0
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where +∞<≤ )1(0 λ , we formulate the null 
hypothesis: 
 

0H : The pipeline transportation system has 
the exponential reliability function. 
Further, we estimate the unknown parameter )(uλ  
of the density function of the hypothetical 
exponential distribution and obtain  
 

   ,00027.0
56.3719

1
)1(

1
)( ≅≅=

T
1λ                       (7) 

where )1(T  is the empirical mean value of system 
conditional lifetimes in the reliability state subset 

}.2,1{  
 
Hence, we get the following form of the reliability 
function coordinate 
 

   




≥−
<

=
.0],00027.0exp[

0,0
)1,(

tt

t
tR  

 
To verify the hypothesis 0H  we join the intervals 

), jj yxI j 〈=  that have the number jn of 

realizations less than 4 into 22=r  new intervals. 
The new intervals and new realizations of the 
histogram are presented in Table 6. 
 
Table 6. Joined intervals and new realizations of the 
histogram of the pipeline system lifetime 
 

No jx  jy  jn  jp  

1 4.70 782.88 207 0,19 
2 782.88 1561.06 148 0,15 
3 1561.06 2339.24 120 0,12 
4 2339.24 3117.41 99 0,10 
5 3117.41 3895.59 79 0,08 
6 3895.59 4673.77 66 0,07 
7 4673.77 5451.95 44 0,05 
8 5451.95 6230.13 39 0,04 
9 6230.13 7008.30 34 0,04 
10 7008.30 7786.48 22 0,03 
11 7786.48 8564.66 32 0,02 
12 8564.66 9342.84 15 0,02 
13 9342.84 10121.02 19 0,02 
14 10121.02 10899.20 11 0,01 
15 10899.20 11677.37 13 0,01 
16 11677.37 12455.55 16 0,01 
17 12455.55 13233.73 6 0,01 
18 13233.73 14011.91 8 0,01 
19 14011.91 14790.09 5 0,00 
20 14790.09 16346.44 5 0,01 
21 16346.44 17902.80 5 0,00 
22 17902.80 24906.40 5 0,01 

 
The hypothetical probabilities that the system 
lifetime )(uT  takes values from the new intervals 
are given according to the formula 
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for ,,...,2,1 rj =  under the assumption that the 

hypothesis 0H  is true. 
The next step is to calculate the realization of the 

2χ (chi-square)-Pearson’s statistics ,nu  according to 
the formula given in [11], which amounts 
 

   
( )

∑
=

≅
−

=
)(

1

2

.89.21
)(

)()(ur

j j

j
j

n upn

upnun
u  

 
Assuming the significance level 05.0=α  for 

2011221)1( =−−=−− lr  degrees of freedom, from 

the tables of the 2χ -Pearson’s distribution we find 

the value .41.31=αu  The critical domain 
and acceptance domain in the form of the intervals 
are presented in Figure 4. 
 

 
 

Figure 4. The graphical interpretation of the critical 
interval and the acceptance interval for the chi-
square goodness-of-fit test 
 
The obtained value nu  belongs to the acceptance 
domain 
 
   ,41.3189.21 =≤= αn uu  
 
thus, at the significance level 05.0=α  we do not 
reject the hypothesis 0H  stating that the pipeline 
system reliability function is exponential. 
 
4.2. Comparison of the results 
 
Based on the analytical formulas (4)-(6) and 
assuming 1=r , the following results were obtained 
[11]: 
 
- the expected value of the system unconditional 

lifetimes in the reliability state subset }2,1{  
 

   37.0)1,()1(
0

== ∫
+∞

dttµ R  year; 

- the system risk function, when 1=r  is the 
system critical reliability state, is given by 

 
   ),1,(1)( tt Rr −=  

 
for ),0 +∞〈∈t , where )1,(tR  is given in [11] by 
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- the moment when the system risk function 

exceeds a permitted level 05.0=δ  
 

   == − )(1 δτ r 0.066 year, 
 

where )(1 t−r  is the inverse function of the risk 
function )(tr . 

 
The values of those characteristics obtained by using 
Monte Carlo method according to (7) are presented 
below 
 

   ,42.0]00027.0exp[)1(
0

=−= ∫
+∞

dttµ  

 
   ],00027.0exp[1)( tt −−=r  
 

   022.0]95.0ln[56.3719)05.0(1 ≅−== −rτ year. 
 
The graph of the risk function )(tr  of the piping 
transportation system is given in Figure 5. 
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Figure 5. The graph of the piping transportation 
system risk function )(tr  
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5. Conclusions 
 

The Monte Carlo simulation method was used 
for complex technical system reliability evaluation. 
The obtained results were compared with the results 
of the analytical methods presented in [11]. 
The differences are enough large and therefore 
further analysis of these two methods is necessary 
and their accuracy have to be investigated and their 
convergence improved. 
The first and natural idea of analysis is to observe 
whether the increasing the number of runs provides 
more accurate simulation results.  
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