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1. Introduction  
 

Research on safety and therefore conduct of various 
health risk analyses has made a relatively recent 
entry into the fields of science. Safety research 
started with the realization that safety problems in 
many branches of technics and human life are 
common in character and therefore can be described 
in the same ways.  
 
2. Risk index assessments methods  
 

Risk analysis has been done in accordance with the 
referenced method [1], [2]. First, critical points of 
helicopter structure have been found, and one of 
them has been taken under observation. With respect 
to the laboratory data probability normal distribution 
has been proposed  for steel strength. Value of the 
maximum principal stress in force mounting 
elements knots was obtained by using the model and 
calculations of the MSC Marc program. Based on 
experimental studies using Markov chain models the 
probability distribution function of internal stresses 
in the critical element was determined. Then the 
cumulative distribution for the probability 
distribution of stresses and strength were calculated. 
Reliability index, Cornell’s reliability index and 
Hasofer-Lind’s reliability index have been counted. 
 
2.1. Risk index 
 

The basic assumption of the model is the conclusion 
that the helicopter component is damaged when the 

stress value is greater than the strength of this 
element. Stress  Xf and strength Xg are random 
variables with probability distributions defined by 
the  density functions  f(x) and g(y). Reliability of 
helicopter component can be defined as follows: 
 

   ffg PXXPR −=>= 1)(                                   (1) 

 
where  Pf is the probability of failure. Having a 
relationship that defines the density function, based 
on calculations in [1], the expression can be written:  
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This model allows to determine the likelihood of 
damage to the helicopter component when the single 
force occurs.  
 

 
 

Figure 1. Superimposing the Stress Graph on the 
Strength Graph shows the Stress/Strength 
Interference. 
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Abstract  
 

In this work, algorithms have been used to compare the reliability measure of helicopter structure critical 
points. Reliability index, Cornell’s reliability index and Hasofer-Lind’s reliability index have been calculated 
and analysed. Inputs to the algorithms, stress and strength were generated by using the Markov chain model 
based on actual flight records of helicopters. With this approach,  results of methods for determining the 
reliability of critical points of a helicopter’s structure are properly founded. 
 

stress/strength [Pa] 

   
   

 p
ro

ba
bi

lit
y 



Woch Marta 
Analysis and comparison reliability measure of critical points 

 

 54 

A function describing this model is a random 
variable: 
 
   fggf XXXXg −=),(                                       (3) 

 
According to [1] damage occurs if g ≤ 0. If Xf and Xg  
is the  random variables having normal distributions 
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where Φ is the normal  cumulative distribution 

function (CDF) and 
g

g

σ
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=  is risk index. 

 
2.2. Cornell’s risk index  
 

Often, when determining the reliability of critical 
points of a helicopter’s structure [6] a problem arises 
that the distribution of the random vector X[n] is 
unknown. Vector of mean values of random vector 
X[n] is known: 
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and the covariance matrix is also known: 
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where 0
iX  is the mean value, σi is the variance of 

random variable Xi and ρik is correlation coefficient 
of random variables Xi and Xk. Function g(X) can be 
evaluated to Taylor series:  
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Cornell’s risk index is defined as: 
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2.3. Hasofer - Lind’s risk index  
 

The ideology [6] is the expansion of the function g in 
a Taylor series around a point lying on the boundary 
surface. As a point of linearization the chosen point 
is lying closest to the origin in standard Gaussian 
space U. The transformation of space X to the U has 
the form: 
 
   U=L-1 D-1 (X - X0)                                                 (9) 
 
where ][

ixσ=D is a diagonal matrix, and L is a 

lower triangular matrix obtained from the Cholesky 
decomposition of a matrix of correlation coefficients 
ρ = ρij and ρ = LLT. Design point u* corresponds to 
the largest value of the probability density function 
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where G(U)=g(X0+DLU)  is the boundary function 
transformed to the U Gauss space, ||·|| is an Euclidean 
norm. Hasofer-Lind’s risk index is defined as: 
 
   *)]([ δβ 0GsignFOSM =                                         (11) 
 
3. Markov Chain model 
 

According to [3] a First-order Markov Chain (FCM) 
with finite space E is a sequence of E-valued random 
variable Ν∈nnX )(

 

such that the conditional 

distribution of 1+nX

 

knowing the discrete-time 

process nmmX ≤)(

 

is the same as the conditional 

distribution of 1+nX  given only nX : 
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If K is the number of load classes, the transition 
probabilities define a K x K - real matrix P such that: 
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where Ki ,...1= , )|( 1, injnji eXeXPp === + . 

In order to generate the next value of the Markov 
Chain  1+nX , it is sufficient to know only the 

previous value nn eX = . The probability that the 

11 ++ = nn eX is 1, +nnp . 

Hidden Markov chains Models (HMM) [4,5] are an 
extension of the concept of Markov chains for which 
the observation of X is not directly the state 
pertaining to E but a probabilistic function of this 
state. Each state has a probability distribution over 
the possible outputs. It is a bivariate discrete-time 
process { } 0, >nnn XS . Initially, in order to generate 

1+nX  based on knowledge of the previous value nX  

function kS  must be chosen. Based on random 

function kS  the value 1+ne  is generated. 

 
4. Calculation and results 
 
4.1. Calculation of the probability curve of 
strength 

Samples of steel with the symbol 30HGSNA in the 
form of a rod with a diameter of 5-8 mm were tested. 
Yield stress was obtained as follows [7]: 
 
Table 1. The results of yield stress:  
 

No. 
samples 

2/05 
/2 

2/05 
/3 

2/05 
/4 

2/05 
/5 

2/05 
/36 

R0.05[MPa] 1160 1145 1150 1150 1200 
 

No. 
samples 

2/05 
/61 

2/05 
/62 

2/05 
/63 

2/05 
/64 

2/05 
/132 

R0.05[MPa] 1230 1230 1240 1175 1175 
 

No. 
samples 

2/05 
/133 

2/05 
/134 

2/05 
/135 

2/05 
/136 

2/05 
/137 

R0.05[MPa] 1235 1280 1290 1330 1220 
 

No. 
samples 

2/05 
/138 

2/05 
/139 

2/05 
/140 

2/05 
/141 

2/05 
/142 

R0.05[MPa] 1225 1235 1240 1225 1250 
 

 

Based on the survey it can be stated that the yield 
stress of steel 30HGSNA, obtained on samples heat 
treated under ITWL is: R0.05 = 1220 MPa ± 1,82%. 
Based on these results one can propose a normal 
probability distribution of strength with the mean 
equal µ = 1219 and variance σ2 = 1102. 
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4.2. Calculation of the probability curve of 
stress 
 

Critical element of the helicopter Mi-24 No. 8 was 
scanned using a 3D scanner ATOS III (Advanced 
Topometric System) [8]. Based on photogrammetric 
measurements the shapes of force elements were 
reproduced in a CAD/CAM environment. Models of 
geometric elements of strength were performed in 
Unigraphics. 
A finite-element method (FEM) model applied a unit 
axial force and the calculations were performed by 
using the MSC Marc programme. The maximum 
value of the maximum principal stress under the 
influence of force per unit amounted to 2880 Pa. 
 

 
 

 Figure 2. Maximum principal stress distribution in a 
single node of the holes for mounting the elements. 
 

 
 

Figure 3. Histogram of stress value 
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Based on measurements of the strength of the flight 
test a stress histogram was generated. 
Based on these results one can propose a normal 
probability distribution of stress with the mean equal 
µ = 70 and variance σ2 = 252. 
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Based on the shape of the histogram of stress levels, 
the data set was split into 8 ck-classes. For the FCM 
model, all stress of load sequences pertaining to a 
given class ci were replaced by a unique stress value 
si. 
 
Table 2. Probability distribution function after the 
application of the FCM model 
 

xi 15 30 45 60 
pi 0,0034 0,0629 0,0698 0,2699 

 

xi 75 95 140 180 
pi 0,1733 0,3094 0,1084 0,0025 

 
For the HMC model the finite space E was divided 
into 5 parts. After the calculation of stress cycles the 
resulting probability distribution can be estimated by 
following function f3: 
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Figure 4. Histogram of stress value and its estimate  
 
 

4.3. Results 
 

Risk index β can only be calculated from a normal 
probability distribution of Xi. Based on a normal 
probability distribution of strength with the mean 
equal µ = 1219 and variance σ2 = 1102 , a normal 
probability distribution of stress with the mean equal 
µ = 70 and variance σ2 = 252, one can propose risk 
index β = 10,2. This value corresponds to probability 
of failure Pf <1·10-7. 
Cornell’s risk index βMVFOSM depends on how the 
data stress was generated. If the data from real flights 
is used (f1), Cornell’s risk index is βMVFOSM = 2,07. 
This value corresponds to probability of failure Pf = 
1,92·10-2. When the stress data is obtained using 
Markov chain models, I received the following index 
and probability of failure: βMVFOSM = 1,33, Pf = 
9,18·10-2 and βMVFOSM = 2,94, Pf = 1,64·10-3 for First-
order (f2) and Hidden Markov Chains (f3). 
Hasofer-Lind’s risk index βFOSM also depends on how 
the data stress was generated. If the data real from 
flights is used (f1), Hasofer-Lind’s risk index is βFOSM 
= 0,0037. When the stress data is obtained using 
Markov chain models, I received the following index 
and probability of failure: βFOSM = 0,0016 and βFOSM 
= 0,0076 for First-order (f2) and Hidden Markov 
Chains (f3). All those values correspond to 
probability of failure Pf =0,48÷0,5. 
 
5. Conclusions 
 

Risk index and Cornell’s risk index models allow to 
determine the likelihood of damage to the helicopter 
component when a single force occurs. Based on 
these assumptions, it will not apply in aviation where 
a stress on a specific element varies with time. 
In these models the aging process of the element is 
not included. Taking into account of this 
phenomenon would decrease strength, and thus 
decrease the number of cycles till failure. 
Models are similar regardless of how the stress was 
generated from the basis of experimental data. They 
differ slightly from those obtained with standard 
models. 
Results obtained from Hasofer-Lind’s risk index are 
not satisfactory. The major drawback of this model is  
not taking into account the boundary curve shape. 
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