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1. Introduction 

For the reliability and safety analysis of complex 
multi-component systems a number of different 
quantitative approaches are available. The best known 
and most frequently applied one is the theory of 
binary coherent systems ([1] and [2]) which can be 
regarded as a mathematical sophistication of the 
traditional fault tree analysis which is widely 
employed in reliability engineering. However, this 
method has certain limitations. For example, fault 
trees cannot model sequence dependent failure modes 
in which the order of occurrence of events is relevant. 
Moreover, systems involving complex maintenance 
and repair operations are hard or even impossible to 
model using this framework. In order to analyze such 
systems the so-called state space approaches may be 
used. Here, the time evolution of the system is 
modeled by a stochastic process on the set of all 
possible system states, the so-called state space; in 
most cases Markov or semi-Markov processes are 
employed for this purpose. Even though state space 
models offer a large amount of flexibility to the 
analyst, they have certain drawbacks. For example, 
homogeneous semi-Markov models do not cover 
component aging; moreover, the expenditure to 

analyze complex systems with a large state space 
quickly grows. However, state space models are by 
now well established and widely applied in reliability 
analysis and engineering as described in [5] to [7] and 
[17]. 
Whichever framework to describe complex systems 
and their time evolutions is used, a number of 
characteristic parameters can be defined which 
describe various safety, reliability and performance 
aspects of the system. For multi-component systems, 
particularly significant parameters are the so-called 
component importance measures, which are used to 
identify those components that are most detrimental to 
system performance. Since system performance can 
have many interpretations, such as safety, reliability, 
availability, etc., it is not surprising that a large 
number of different importance measures have been 
developed (see [4] and [9]).  
Applications of importance measures include system 
design, optimization of operation and regulatory 
purposes, for example in the context of risk informed 
decision making or in safety reviews. Most of these 
importance measures are defined and studied in the 
context of binary coherent systems, and by now there 
is a copious and mathematically satisfying theory, 
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which has recently been generalized to include 
systems with repairable and multistate components in 
[12] and [13]. 
However, in the state space approach the problem of 
constructing and studying importance measures 
remains largely open. In [16] importance measures for 
systems with Markov dynamics were studied and 
explicitly calculated using a perturbation approach, 
but a systematic study of importance measures is 
lacking.  
In the present paper it is our purpose to report on a 
component importance measure introduced in [8] for 
multi-component systems with maintenance and/or 
component repair, whose time evolution is given by a 
semi-Markov process. It is close in spirit to the steady 
state Barlow–Proschan measure for repairable binary 
coherent systems.  
We present results which express the importance 
measure in terms of quantities easily calculated 
numerically from the defining quantities of the semi-
Markov process, such as transition rates, mean 
recurrence times, etc., for both the time dependent as 
well as the steady state case. Moreover, we provide a 
discussion and an interpretation of the importance 
measure, and we explain its relation to the classical 
steady state Barlow–Proschan importance measure for 
binary coherent systems with component repair. 
The underlying mathematical setup which is 
employed can be briefly described as follows: We 
consider a system with n  components and a finite 
state space E . The state space is assumed to be 
partitioned in two disjoint subsets, corresponding to 
the states of system functioning or failure. 
Furthermore, we assume that for each system state 
and each component it is specified whether the 
component is up (functioning) or down (failed, under 
repair, on standby, undergoing maintenance, etc.).  
As already mentioned above, the time evolution of the 
system is assumed to be given by a homogeneous 
semi-Markov process with values in E . Thus, the 
states successively visited form a Markov chain, and 
the sojourn time in each state is random, following a 
distribution which depends on the present state and 
the state to be visited next.  

2. Assumptions and notation 

This section introduces our mathematical setup and 
notation used throughout the paper. 

2.1. Multi-component systems 

We consider a repairable or maintained system with 
state space },...,1{E d= . The system is assumed to 
consist of n  components, and we denote the set of 
components by },...,1{ n=C . We suppose that in each 
system state Ei ∈  a component C∈a can either be 

up or down as determined by the maps }1,0{: →Eca , 

with 1)( =ica  when a  is up in i  and 0)( =ica  when 
it is down. Moreover, we suppose that the state space 
is partitioned in two disjoint subsets U  and D , i.e. 

DUE ∪= , where U  contains all states in which the 
system is up and D  those in which it is down. An 
example of a system which fits in this framework is 
given in Section 4. 

2.2.  Semi-Markov processes 

The time evolution of the system under consideration 
is assumed to be given by a homogeneous semi-
Markov process 0)}({ ≥= ttZZ  with values in E , 
defined on some underlying complete probability 
space ),,( PFΩ . The corresponding Markov renewal 

process (MRP) is denoted by N∈nnn SJ )},{( , which is a 

sequence of random variables in +× RE  such that 
...0 10 ≤≤= SS , and such that the following Markov 

property 
 
   },...,,,...,|,{ 0011 nnnn SSJJtSjJ ≤= ++P  
            
   = )(}|,{ 11 njnJnnn StQJtSjJ −=≤= ++P  

 
is satisfied, where )(tQij denotes the semi-Markov 

kernel of the MRP. Upon introducing the random 
variables 000 == SX , 1−−= nnn SSX  and 

conditioning on }{ iJn =  the last equation can be 
written as 
 
   }|,{)( 1 iJtXjJtQ nnnij =≤== −P ,                      (1) 

 
independently of n , i.e., the process is homogeneous. 
The connection between Z  and the corresponding 
MRP is given by )()( tNJtZ = , where the counting 

process 
 
   }:sup{)( 1 tXXntN n ≤+⋅⋅⋅+∈= N  
 
counts the number of transitions of Z  up to time t . 
The initial distribution of Z  will be denoted by 

})0({ iZpi == P ; moreover, we will write 

}|{}{ 0 iJi =⋅=⋅ PP  as well as iE  for the corresponding 
expectation.  
The semi-Markov kernel satisfies the following 
properties:  

(i) 0)( =tQij  for 0≤t , 

(ii)  the map )(tQt ija  is non-decreasing and 

right-continuous, and  
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(iii)  if )(lim:)( tQQp ij
t

ijij ∞→
=∞=  then 1=∑

∈Ej
ijp .  

In the following, we will occasionally employ the 
matrix notation )]([)( tQtQ ij=  and ][ ijpP = . 

Conversely, it can be shown that for a matrix function 
)(tQ  satisfying the above three properties (i)–(iii) and 

for an initial distribution }:{ Eipi ∈  a MRP exists 
such that (1) is satisfied, hence MRPs, or equivalently 
semi-Markov processes, can be conveniently 
constructed by specifying a semi-Markov kernel and 
an initial distribution. We remark that it can be shown 
that N∈nnJ }{  is a Markov chain with transition matrix 
P , the so-called embedded Markov chain of the semi-
Markov process Z .  
We introduce the n-fold matrix convolution power of 
Q  as follows:  
 

   ijtij tQ δ}0{
)0( 1)( ≥= , 

 

   )()()1( tQtQ ijij = ,  

 
and 
 

   ∑ ∫ −=
∈

−
≥

Ek

t
n

kjikt
n

ij stQsQtQ
0

)1(
}0{

)( )()(d1)(  

 
                },{ tSjJ nni ≤== P . 
 
The recurrence times of state Ej ∈  are denoted by 

,..., 21
jj SS . Then, the differences j

n
j

n SS −+1  are i.i.d. 

with distribution jjG . Moreover, we denote the 

distribution of jS1  conditional on }{ 0 iJ =  by ijG . 

The first moment of jjG  is the mean recurrence time 

jjµ  of state j . Let )(tN j  be the process which counts 

the recurrences of state j , and define the Markov 
renewal function of Z  as follows: 
 

   ∑==
∞

=0

)( )())(()(
n

n
ijjiij tQtNt Eψ . 

 
The matrix ][ ijψψ =  is called the Markov renewal 

matrix since it satisfies an integral equation of Markov 
renewal type. 
We finally introduce the transition probabilities of Z  
as }|)({)( 0 iJjtZtPij === P . Since we will be 

interested in their limiting behavior as ∞→t  we 
quote the following result. 
 
Theorem 1: If Z  is irreducible and positive recurrent 

(i.e. the embedded Markov chain is irreducible and 
positive recurrent), then  
 

   j

Ek
km

jj

ij
t m

m
tP ω

π
π

:)(lim =
∑

=
∈

∞→
,                                 (2) 

 
independently of i , where km  is the mean sojourn 

time of the process in state k , and }:{ Eii ∈π  is the 
steady state distribution of the embedded Markov 
chain, i.e. 0≥iπ , ∑

∈
=

Ei
i 1π , and ][ iππ =  is a left 

eigenvector of P , ππ =P . 
 
A more detailed exposition of the theory of semi-
Markov processes as well as proofs are provided in 
[10], [11] and [15]. 

2.3. Binary coherent systems 

The traditional framework for discussing the 
reliability of complex multi-component systems is the 
theory of binary coherent systems. In order to exhibit 
the relation of our framework to the theory of binary 
coherent systems we introduce some relevant notions 
here. Again we consider a system consisting of n  
components, },...,1{ n=C , and take its state space to 

be nE ×= }1,0{ , with the interpretation that 

Eiii n ∈= ),...,( 1  means that component C∈a  is up if 

1=ai  and down if 0=ai , thus ana iiic =),...,( 1 .  
The functioning or failure of the system is determined 
by }1)(:{ =∈= iEiU φ  and }0)(:{ =∈= iEiD φ , 
where }1 ,0{: →Eφ  is the structure function of the 
system, which is (for all practical purposes) equivalent 
to a coherent fault tree. The structure function is 
usually required to satisfy two properties: that no 
component is irrelevant to the system and that 
improvements of the individual components cannot 
lead to a degradation of system performance. The time 
evolution of the system is given by a stochastic 
process Z  with values in E , and we write its 
coordinates as EtttZ n ∈= ))(),...,(()( 1 χχ , where 

)(taχ  indicates the functioning or failure of 
component a  at time t . We remark that because of 
component aging and the regenerative property of 
semi-Markov processes, Z  is in general not a semi-
Markov process, even if the components are assumed 
to be independent. 
In the framework of binary coherent systems a 
number of component importance measures have been 
introduced. The most important one for non-repairable 
systems is the Birnbaum measure; it is defined by 
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   }1))(,0())(,1({),(B =−= tttaI aa χφχφP  
 
with ))(),...,(()( 1 ttt nχχχ = , i.e. it is equal to the 
probability that the system is in a state at time t  in 
which component a  is critical for the functioning of 
the system. Here we have employed the usual notation 
 
   ),...,,1,,...,(),1( 111 naaa iiiii +−= , 
 
   ),...,,0,,...,(),0( 111 naaa iiiii +−= , 
 
if Eiii n ∈= ),...,( 1 . A large fraction of the commonly 
used importance measures for non-repairable binary 
coherent systems are weighted averages of the 
Birnbaum measure. For example, if the components 
are independent the Barlow–Proschan measure is 
given by 
 

   ∫=
∞

0
BP-B )d(),()( sFsaIaI a , 

 
where }1)({)( == ttF aa χP  is the life distribution of 

component a , and )(1)( tFtF aa −= . Then )(P-B aI  
can be interpreted as the probability that component 
a  caused system failure when the system eventually 
fails. We will come discuss this point in Section 3.3. 

3. A Barlow–Proschan type importance 
measure for Semi-Markov systems 

In this section we will introduce our component 
importance measure for multi-component systems, 
using the mathematical framework laid out in Section 
2.1. The time evolution of the system on E  will be 
assumed to be given by a semi-Markov process Z  as 
introduced in Section 2.2. This setup is general 
enough to include systems with maintenance and 
repair. 

3.1. Definition and basic properties 

Let Eji ∈,  be two states. We say that a component 
C∈a  is critical for the transition of the semi-Markov 

process Z  if the following three conditions are 
satisfied: 

C1. On transiting from i  to j  the system fails, i.e. 
Ui ∈  and Dj ∈ . 

C2. On transiting from i  to j  component a  fails, 

i.e. 1)()( =− jcic aa . 

C3. On transiting from i  to j  no components 

other than a  fail, i.e. 0)()( =− jcic bb  for all 
C∈b  and ab ≠ . 

The set of all components which are critical for the 
transition from  i  to j  will be denoted by ijC . Let 

)(tNa  be the counting process which counts the 
number of transitions of Z  for which component a  is 
critical. We now propose a component importance 
measure by defining 
 

   ))((
d
d

),(r tN
t

taI aE= ,                                     (3) 

 
provided the derivative exists. We also define a 
normalized form of ),(r taI  by 
 

   
∑

=
∈Cb

r tbI

taI
taI

),(

),(
),( r*

r ,                                            (4) 

 
with the property that ∑ =

∈Ca
taI 1),(*

r .  

Thus, ),(r taI  is the expected rate of transitions at 
time t  for which component a  is critical; the index r  
indicates the relation of the measure to this transition 
rate. In other words, ttaI r d),(  is the probability that 
system failure together with the failure of component 
a , but of no component other than a , occurs during 
the time interval ]d,] ttt + . In this sense ttaI r d),(  is 

the probability that component a  caused system 
failure during the above time interval. However, in the 
present framework there is in general no sensible way 
to define a notion of a causal relationship between 
system failure and that of a component. Therefore, 
rather than speaking of a causal relationship, we 
should more precisely say that a component is 
associated with system failure. 
We can also give an interpretation of the normalized 

importance measure ),(*
r taI :  Provided that system 

failure always coincides with the failure of precisely 
one component, 
 
   ∑

∈Cb
ttbI d),(*

r  

 
is the probability of system failure during the time 
interval ]d,] ttt + .  
Consequently, using the definition of conditional 

probability, ),(*
r taI  can be interpreted as the 

probability that component a  caused system failure, 
given that the system fails at time t . 
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We remark that the notion of component criticality as 
defined by the above three conditions C1.–C3. should 
be subjected to critical scrutiny for the concrete 
application under consideration since, for example, in 
view of the underlying notion of association of system 
and component failure, common cause failures which 
take out more than one component in a transition of 
the semi-Markov process do not contribute to the 
importance measure. If this is not tolerable and 
common cause failures are to be taken into account by 
the importance measure, condition C3. may be 
dropped from the list. 

3.2. Calculation of the importance measure 

After having introduced a component importance 
measure in Section 3.1. we now present a way to 
express it explicitly in terms of quantities easily 
obtainable from the building blocks of the semi-
Markov process Z . To this end we quote the 
following theorem which was proved in [6]. 
 
Theorem 2: Suppose that the semi-Markov kernel of 
Z  is absolutely continuous with respect to Lebesgue 
measure, i.e. ttqtQ ijij d)()d( = , and that 

 
   )(},:)(max{ tEjitQij O=∈  

 
(this is the case if the density functions ijq  are 

assumed to be continuous at 0  for all Eji ∈, ).  Then 
the derivative in (3) exists and we have 
 

   ∑ ∫ −=
∈

∈
Ekji

t

ijkikijCa stqsptaI
,, 0

}{r )()d(1),( ψ .         (5) 

 
It is worth noting that the proof of this result closely 
parallels a method from [14]. 
With the help of (5) we are able to directly calculate 

),(r taI , provided the Markov renewal function ψ  of 
the semi-Markov process is known explicitly. Since 
usually the semi-Markov process is specified in terms 
of its semi-Markov kernel, an additional effort is 
required to find ψ . One possibility is to use the fact 
that ψ  satisfies a Markov renewal equation and to 
employ the conventional methods of solution, e.g. in 
terms of Laplace transforms. 
However, we can expect a considerable simplification 
if the semi-Markov process approaches a steady state 
and the importance ),(r taI  converges as ∞→t .  
This is exemplified by the next result, which is a 
corollary to Theorem 2. 
 
Corollary 3: Suppose that the assumptions of 
Theorem 2 are satisfied, and assume in addition that 

Z  is irreducible and recurrent. Moreover, suppose 
that each function ijq , Eji ∈, , is direct Riemann 

integrable. Then 
 

   ∑==
∈

∈∞→ Eji
ii

ij

ijCat

p
taIaI

,
}{r

st
r 1),(lim)(

µ
,                  (6) 

 
where iiµ  is the mean recurrence time of state i .  
 
In this way we have found a time independent 
importance measure which is not subject to the 
criticism of time dependent importance measures like 

),(r taI  or ),(*
r taI , in that for them the analyst has to 

decide at which points of time they are to be evaluated 
and compared for different components.  

In order to evaluate )(st
r aI  explicitly with the help of 

formula (6) the mean recurrence times iiµ  have to be 
determined. They can be obtained from the following 
system of linear equations: 
 
   ∑+=

≠ jk
kjikiij pm µµ , 

 
or alternatively from 
 

   ∑=
∈Ej

jj

i

ii mπ
π

µ 1
. 

 
As in (4) we also define a normalized version of 

)(st
r aI  by 

 

   
∑

=
∈Cb

bI

aI
aI

)(

)(
)(

st
r

st
rst*

r , 

 
which has the property that ∑ =

∈Ca
aI 1)(*st

r . 

Remark 4: In Theorem 2 and Corollary 3 it was 
assumed that the semi-Markov kernel of Z  is 
absolutely continuous. However, in some applications 
this assumption may be too restrictive. We can arrive 
at a generalization of Corollary 3 in the following 

way. Let ,..., 21
ijij SS  be the times at which a transition 

from state i  to state j  occur. Then these times form a 

renewal process and ij
n

ij
n SS −+1  are i.i.d. with 

distribution denoted by ijH . Moreover, let )(tNij  be 

the corresponding counting process. If ijν  denotes the 

mean of ijH  then from the elementary renewal 

theorem 
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ij

ij

t t

tN

ν
1))((

lim =
∞→

E
. 

 
Now since 
 
   ∑=

∈
∈

Eji
ijijCaa tNtN

,
}{ )(1)(  

 
we find, using a result from [15] concerning ijν , that 

 

   ∑−
∈

∈∞→ Eji
ij

ijCaa
t

t
tN

t ,
}{1))((

1
lim

ν
E  

 

   ∑−=
∈

∈∞→ Eji
ii

ij

ijCaat

tp
tN

t ,
}{1))((

1
lim

µ
E . 

 
Thus ))(( tNaE  is asymptotically differentiable with 
derivative still given by (6). In view of this result we 
can sensibly generalize formula (6) also to semi-
Markov processes without any further assumptions 

about its kernel, and the interpretation of )(st
r aI  given 

above persists. 

3.3. Relation to the classical Barlow–Proschan 
importance measure for repairable systems 

In [3] Barlow and Proschan suggest an importance 
measure for repairable binary coherent systems, which 
can be constructed as follows. Consider a binary 
coherent system of n  components as introduced in 
Section 2.3. We suppose that each component is 
repaired after failure, and that the failure and repair 
times for component a  are assumed to be distributed 
according to the distributions aF  and aG . All failure 
and repair distributions are assumed to be pairwise 
independent. If )(tNa  denotes the random variable 
counting the number of system failures caused by 
component a  until time t , the steady state Barlow–
Proschan importance measure for repairable systems 
is defined by 
 

   
∑

=
∈

∞→

Cb
b

a

t tN

tN
aI

))((

))((
lim)(st

P-B E

E
.                                  (7) 

 
The existence of this limit under the above hypotheses 
follows from a simple application of the elementary 
renewal theorem. To arrive at an interpretation of (7) 
we denote by )(tM a  the number of failures of 
component a  until time t . Then it can be shown that 
 

  ∫=
t

aa sMsaItN
0

B ))d((),())(( EE . 

 
Using this identity and l’Hôpital’s rule we can write 
heuristically 
 

   
∑

=
∈

∞→

Cb
bt

at

t tMtbI

tMtaI
aI

))((),(

))((),(
lim)(

d
d

B

d
d

Bst
P-B E

E
                  (8) 

 

                
∑

=
∈

∞→

Cb
b

a

t tMtbI

tMtaI

))((d),(

))((d),(
lim

B

B

E

E
. 

 
Now in view of the interpretation of ),(B taI  we 

conclude that ))((d),(B tMtaI aE  is the probability 
that system failure caused by component a  occurs 
during ]d,] ttt + .  
Moreover, since the sum over all components of this 
expression is the probability that system failure occurs 
during ]d,] ttt +  it follows that 
 

   
∑
∈Cb

b

a

tMtbI

tMtaI

))((d),(

))((d),(

B

B

E

E
 

 
is the probability that system failure is caused by a , 
given that the system fails at time t .  
Now letting ∞→t  we see that the steady state 
Barlow–Proschan importance measure can be 
interpreted as the steady state probability that 
component a  caused system failure, given that 
system failure has occurred. We finally note that with 
the help of Blackwell’s theorem we can conclude 
from (8) that 
 

   
∑ +

+
=

∈Cb
bb

aa

bI

aI
aI

)/()(

)/()(
)(

B

Bst
P-B µλ

µλ
, 

 
where ),(lim)( BB taIaI

t ∞→
= , and aλ  and aµ  are the 

expectations of aF  and aG , respectively. 
Consider now an n  component system with semi-
Markov time evolution as introduced in Section 3.1. 
As already remarked, if system failure always 
coincides with the failure of precisely one component, 

),(*
r taI  equals the probability that component a  

caused system failure, given the system fails at time 
t .  
Hence, if we consider a binary coherent system such 
that the probability of simultaneous failure of two or 
more components is zero we conclude that the 
corresponding steady state importance measure 
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),(lim)( *
r

*st
r taIaI

t ∞→
=  equals )(st

P-B aI , provided the 

limit exists. More formally we can prove: 
 
Proposition 5: Consider a multi-component system 
with semi-Markov time evolution as in Section 3.1, 
and suppose that the assumptions of Corollary 3 are 
satisfied. Then  
 

   
∑

=
∈

∞→

Cb
b

a

t tN

tN
aI

))((

))((
lim)(*st

r E

E
. 

 
The proof is a simple application of l’Hôpital’s rule. 
Thus we see that the steady state importance measure 

)(*st
r aI  defined by (6) is a generalization of the 

Barlow–Proschan measure for repairable systems 

)(st
P-B aI  as defined in (7).  

4. An example of a two-unit cold standby 
system with maintenance and repair 

In this section we present an illustrative example of a 
two component system with maintenance and repair 
whose time evolution is given by a semi-Markov 
process and, hence, fits in the framework laid out in 
Section 2.1. It serves to explain in which way the 
component importance measure defined in Section 3.1 
can be used in practical applications. The example we 
present here has appeared repeatedly in the literature 
with minor variations, for the first time apparently in 
[1], as well as in [5] and [11].  

4.1. Description of the system and its time 
evolution 

The system consists of two components denoted by 
A  and B , i.e. }BA,{=C . The state diagram of the 
semi-Markov process describing the system’s time 
evolution is pictured in Figure 1. 
There are altogether 9 states, i.e. }9,...,1{=E ; the 
transitions between the states with non-vanishing 
transition probability are depicted by arrows in 
Figure 1. Besides being in an “up” condition in which 
it delivers service, each component can be on standby, 
indicated by stby in Figure 1.  
In the standby condition a component delivers no 
service, but it is assumed that upon failure of the other 
component it can start up immediately to ensure the 
functioning of the system.  
Preventive maintenance is carried out periodically on 
both components, indicated by maint in Figure 1. 
During maintenance a component cannot deliver 
service. If a component has failed it is in the down 
state; after failure it can be put in a repair state as 
indicated by rep in Figure 1. From the repair state the 

component transits to the stby state since it is assumed 
that repair includes maintenance. 
 

 
Figure 1. Transition diagram of the semi-Markov 
process according to [5]. The shaded states are the 
states of system failure. 

 
The system’s states in E  can be considered to be pairs 
of states of each component A  and B ; they are 
numbered from 1 to 9 as indicated by the circled 
numbers in Figure 1. The system delivers service if 
there is at least one component in the up state, hence 
the system is down (i.e. unable to deliver service) in 
the states 7, 8 and 9 (indicated by shades in Figure 1). 
Thus using the notation of Section 2.1 we have 
 
   },6,5,4,3,2,1{=U  
 
   }9,8,7{=D . 
 
Moreover, 1)(A =ic  if 6,4,1=i , and 0)(A =ic  if 

9,8,7,5,3,2=i , and analogously for component B , 

i.e. 1)(B =ic  if 5,3,2=i  and 0)(B =ic  if 
9,8,7,6,4,1=i . In view of the conditions C1.–C3. 

stated in Section 3.1 we can write the sets of critical 
transitions AC  and BC  for the components as 
follows: 

A stby 
B up 

���� A up 
B maint 

���� 

A down 
B maint 

���� 

A maint 
B down 

���� 

A rep 
B up 

���� 

A down 
B down 

���� 

A up 
B rep 

���� 

A maint 
B up 

���� A up 
B stby 
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   )}9,5(),8,2{()},9,6(),7,4{( BA == CC  
 
where the ordered pair ),( ji  denotes the transition 
from state i  to state j . 
In the following we describe the time evolution of the 
system in more detail. The components A  and B  are 
assumed to be independent with exponential life 
distributions, with failure rates Aλ  and Bλ . 
Maintenance is carried out alternately on A  and B  
after c  units of time of service and lasts exactly 0t  
units of time.  
Thus, if no failure occurs the system cycles through 
states 1, 2, 3 and 4, with a fixed sojourn in each of 
these states. If component B  fails while the system is 
in state 1, B  is repaired and A  continues to deliver 
service (state 6). The repair times are assumed to be 
independent and exponentially distributed with repair 
rates Aµ  and Bµ , respectively. If in state 6 component 
A  fails before the repair of component B  is 
completed, the system transits to state 9, yielding 
system failure. Otherwise the system transits back to 
state 1. From state 9 transitions to states 5 or 6 are 
possible, depending on which repair is completed 
first. Analogously, a transition from state 1 to state 5 
occurs if component A  fails; then A  is repaired and 
B  ensures system operability. If a component fails 
while the other is in the maintenance state (transitions 
from 2 to 8 and from 4 to 7), system failure occurs.  
It is assumed that the system remains a fixed amount 
of d  units of time in states 7 or 8, respectively, 
modeling the amount of time necessary to abort 
maintenance and put the corresponding component to 
service (transitions to state 5 and 6, respectively). By 
symmetry, the same considerations apply with states 
A  and B  interchanged. 
A semi-Markov kernel )(tQ  leading to a semi-
Markov process modeling the system behavior as 
described in the previous paragraphs has been given in 
[5] and [9].  
Since this semi-Markov kernel contains components 
which are not absolutely continuous with respect to 
Lebesgue Measure (due to the fixed sojourn times 
given that the process jumps, e.g., from state 1 to state 
2), we have to use Remark 4 and (5) to calculate 

)(st
r aI  and )(*st

r aI . 

4.2. Concluding remarks 

In the present paper we have reported about a 
component importance measure for multi-component 
systems with semi-Markov dynamics, which was 
introduced in [8]. 
An illustrative example of a two component system in 
the semi-Markov framework with maintenance and/or 
component repair has been given.  

So far due to various time constraints of the authors 

no numerical results for )(st
r aI  or )(*st

r aI  are 
available, but it is planned to study the dependence of 
these importance measures on the system parameters 
such as the failure or repair rates in the context of this 
example.  
Moreover, it is planned to study our importance 
measures also for examples of further systems beyond 
the one presented in this section, in particular one 
which is relevant to nuclear safety. 
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