Journal of PolishSafety and Reliability Association
Summer Safety and Reliability SeminMelume 3, Numberl, 2012

Hellmich Mario

Berg Heinz-Peter
Bundesamt fir Strahlenschutz, Federal Office fati&#on Protection, Salzgitter, Germany

An importance measure for multi-component systems ith Semi-
Markov dynamics

Keywords

multi-component system, importance measure, Semkd¥gprocess, state space model

Abstract

We consider semi-Markov reliability models of mdomponent systems with a discrete state spaceraen
enough to include systems with maintenance or reyé assume that for all system states the fumictipor
failure of each component is specified. In thisupelve propose a component importance measure vidhich
close in spirit to the classical steady state Barleroschan importance measure for repairable bic@ingrent
systems. We discuss our importance measure to ertert, highlighting the relation to the classiBarlow—
Proschan measure, and present formulas expressingerms of quantities easily obtained from thalding
blocks of the semi-Markov process. Finally an ex@mpgf a two-component cold standby system with
maintenance and repair is presented which illiesréiow our importance measure can be used in gahcti
applications.

1. Introduction analyze complex systems with a large state space
quickly grows. However, state space models are by
now well established and widely applied in reliapil
analysis and engineering as described in [5] t@fid

[17].

Whichever framework to describe complex systems
and their time evolutions is used, a number of
characteristic parameters can be defined which
describe various safety, reliability and performanc
aspects of the system. For multi-component systems,
articularly significant parameters are the soechll
omponent importance measures, which are used to
identify those components that are most detrimental
system performance. Since system performance can
have many interpretations, such as safety, reiigbil

For the reliability and safety analysis of complex
multi-component systems a number of different
guantitative approaches are available. The beswvkno

and most frequently applied one is the theory of
binary coherent systems ([1] and [2]) which can be
regarded as a mathematical sophistication of the
traditional fault tree analysis which is widely

employed in reliability engineering. However, this

method has certain limitations. For example, fault
trees cannot model sequence dependent failure mode%
in which the order of occurrence of events is ratgy

Moreover, systems involving complex maintenance
and repair operations are hard or even impossible t
model using this framework. In order to analyzehsuc availability, etc., it is not surprising that a dar

systems the so-called state space approaches may bﬁumber of different importance measures have been
used. Here, the time evolution of the system is developed (see [4] and [9])

mOd(.ekl)Td byta stotcr:astlcihproc?ss”og t?et set of _a” Applications of importance measures include system
possibie system states, the so-called state Space, design, optimization of operation and regulatory

most cases Mquov or semi-Markov processes are purposes, for example in the context of risk infedm
employed for this purpose. Even though state SPACE yacision making or in safety reviews. Most of these

moollels{ (t);:fer r? large f“.“"‘é”t Obf ﬂEXIb'!I'[y to thel importance measures are defined and studied in the
analyst, they have certain drawbacks. For example, qqntext of binary coherent systems, and by nowether

homogeneous _sempMarkov models do not cover is a copious and mathematically satisfying theory,
component aging; moreover, the expenditure to
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which has recently been generalized to include up or down as determined by the magsE - {0,1} ,
systems with repairable and multistate components i \yith ¢ (i)=1 whena is up ini andc,(i)= Owhen
[12] and [13]. L2 a

However, in the state space approach the problem of !t IS dO.V.V”- Mqreover, We suppose that the stat_eespa
constructing and studying importance measures Is partitioned in two d'SJO'f‘t subsets a'.‘d D'. €.
remains largely open. In [16] importance measuves f E=U D_D’ wherel contalr\s aII_stat_e; in which the
systems with Markov dynamics were studied and SYStem is up and those in which it is down. An
explicitly calculated using a perturbation apprgach €Xample of a system which fits in this framework is
but a systematic study of importance measures is 9'V€N In Section 4.

lacking.

In the present paper it is our purpose to reporaon
component importance measure introduced in [8] for The time evolution of the system under considenatio
multi-component systems with maintenance and/or is assumed to be given by a homogeneous semi-
component repair, whose time evolution is giveraby  Markov process Z ={Z(t)},», with values in E,

semi-Markov process. It is close in spirit to tlmasiy_ defined on some underlying complete probability
state Barlow—Proschan measure for repairable binary space(Q,7,P ) The corresponding Markov renewal

coherent systems. . C
We present results which express the importance PfOC€SS (MRP) is denoted By, S,)} o, Which is a

measure in terms of quantities easily calculated sequence of random variables BxR* such that
numerically from the defining quantities of the $em 0=5§ <S <..., and such that the following Markov
Markov process, such as transition rates, mean property

recurrence times, etc., for both the time dependent

well as the steady state case. Moreover, we pravide —

discussion and an interpretation of the importance Plaa = 1S <o dn Sy Sy}

measure, and we explain its relation to the classic .

steady state Barlow—Proschan importance measure for ~ tJna = 1S St} =Q,;(t=S,)

binary coherent systems with component repair.

The underlying mathematical setup which is is satisfied, whereQ,(t denotes the semi-Markov
empl%yed can be bri_e;;l]y described as fgIIOV\:Cg:_We kernel of the MRP. Upon introducing the random
consider a system wittn components and a finite . e — e _

state spaceE. The state space is assumed to be varla.b.les. XO_SO__Q X =S s“fl and
partitioned in two disjoint subsets, correspondiag ~ conditioning on {J, =i } the last equation can be
the states of system functioning or failure. Writtenas

Furthermore, we assume that for each system state

2.2. Semi-Markov processes

and each component it is specified whether the Q;(t)=P{J, =], X,<t|J =i}, (1)
component is up (functioning) or down (failed, unde
repair, on standby, undergoing maintenance, etc.). independently ofn, i.e., the process is homogeneous.

As already mentioned above, the time evolutiorheft  Tha connection betwee and the corresponding

system is assumed to be given by a homogeneousMRP T by Z(t) = J h th fi
semi-Markov process with values iE. Thus, the is given by Z(t) = Jyy, where the counting

states successively visited form a Markov chaim] an Process
the sojourn time in each state is random, followeng
distribution which depends on the present state and N(t) =sup{nON: X, + 013 X, <t}
the state to be visited next.
counts the number of transitions df up to timet.
2. Assumptions and notation The initial distribution of Z will be denoted by

This section introduces our mathematical setup and P =P{Z(0)=i}; moreover, ~we will write

notation used throughout the paper. P{F=P{00J, =i} as well ask; for the corresponding
. expectation.
2.1.Multi-component systems The semi-Markov kernel satisfies the following

We consider a repairable or maintained system with Properties:
state spaceE ={1...,d} . The system is assumed to () Q®=0fort=o0,

consist of n components, and we denote the set of (i) the map t— Q;(t ) is non-decreasing and
components by” ={1....,n }We suppose that in each right-continuous, and

system staté JE a componentall¢<” can either be
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(i) if p; =Q; () :=tlijTgoqj (t) then j%ipij =1.
In the following, we will occasionally employ the
matrix notation Q(t) =[Q;(t )] and P=[p; ]
Conversely, it can be shown that for a matrix figrct
Q(t) satisfying the above three properties (i)—(iiilan
for an initial distribution{p :i0E } a MRP exists

such that (1) is satisfied, hence MRPs, or equinible
semi-Markov processes, can be conveniently
constructed by specifying a semi-Markov kernel and
an initial distribution. We remark that it can deoan
that {J.} oy iS @ Markov chain with transition matrix

P, the so-called embedded Markov chain of the semi-
Markov proces<Z .

We introduce then-fold matrix convolution power of

Q as follows:

Q|j(0) ) =1{t20} a-ij ,

QY =Q ),

and

Qij(n) (t) = J‘{tzo} k%:gj(; Qik (d S)Qéj”-l) (t _ S)

P{J

n

The recurrence times of statgJE are denoted by
S!,Sl,.... Then, the differencess!,,-S! are i.i.d.
with distribution ij . Moreover, we denote the
distribution of S/ conditional on{J, =i } by G .
The first moment ofG; is the mean recurrence time
u; of statej. Let N;(t) be the process which counts

the recurrences of stat¢, and define the Markov
renewal function ofZ as follows:

¢, O=E (N, )= 2Q" ().

The matrix ¢ =[¢; ] is called the Markov renewal

matrix since it satisfies an integral equation airkbv
renewal type.
We finally introduce the transition probabilitief @

as B (t)=P{Z(t)=j]|J,=i}. Since we will be

interested in their limiting behavior as- o we
guote the following result.

Theorem 1If Z is irreducible and positive recurrent
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(i.e. the embedded Markov chain is irreducible and
positive recurrent), then

m; 7,
O=—""=w,
meﬂk

kOE

(2)

lim P
t-oo

independently ofi, where m, is the mean sojourn
time of the process in state, and{7z :iJE } is the
steady state distribution of the embedded Markov
chain, ie.12 Q > 7 =1, and m=[7; ] is a left

i0E
eigenvector ofP, 7P =n.

A more detailed exposition of the theory of semi-
Markov processes as well as proofs are provided in
[10], [11] and [15].

2.3.Binary coherent systems

The traditional framework for discussing the
reliability of complex multi-component systems lige t
theory of binary coherent systems. In order to leixhi
the relation of our framework to the theory of liina
coherent systems we introduce some relevant notions
here. Again we consider a system consistingnof
components/” ={1,...,n } and take its state space to

be E={01}"", with the interpretation that

i =(iy,....I,) HE means that componeat]¢” is up if

i, =1 and down ifi, = Q thusc,(i;,...,i,) =i,

The functioning or failure of the system is detered

by U={ilE:¢(i)=1} and D={i0E:¢(i)= 0},
where ¢:E - {01} is the structure function of the
system, which is (for all practical purposes) eglent

to a coherent fault tree. The structure function is
usually required to satisfy two properties: that no
component is irrelevant to the system and that
improvements of the individual components cannot
lead to a degradation of system performance. The ti
evolution of the system is given by a stochastic
process Z with values in E, and we write its
coordinates as Z(t) =(x;(t),...x,t)DE, where

X.(t) indicates the functioning or failure of

componenta at timet. We remark that because of
component aging and the regenerative property of
semi-Markov processe< is in general not a semi-
Markov process, even if the components are assumed
to be independent.

In the framework of binary coherent systems a
number of component importance measures have beer
introduced. The most important one for non-repadérab
systems is the Birnbaum measure; it is defined by
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ls(at) = P{e(L,, (1)) —9(0,, x(t)) =1} C3.0n transiting fromi to j no components
other thana fall, i.e. ¢ (i) —c,(j) = 0 for all
with  x(t) = (x,(t),....x, (1)), i.e. it is equal to the b0« andb#a.

probability that the system is in a state at timén
which componenta is critical for the functioning of
the system. Here we have employed the usual notatio

The set of all components which are critical foe th
transition from i to j will be denoted byC; . Let

N,(t) be the counting process which counts the

A1) = (igyeengog Ligageend) number of transitions oZ for which componena is
critical. We now propose a component importance

1) = (oo Orisgrondi ) measure by defining

if i=(i,...i, )OE. A large fraction of the commonly I (at) =%E(Na(t)), (€))
used importance measures for non-repairable binary
coherent systems are weighted averages of the
Birnbaum measure. For example, if the components
are independent the Barlow—Proschan measure is
given by

provided the derivative exists. We also define a
normalized form ofl, (a,t )oy

I (at)y=— @Y

l5p(@) =] 1, (@ 9F, (@), 1k

(4)

with the property that>' 1 (a,t) = 1.
where F,(t) =P{ x,(t) =1} is the life distribution of a
componenta, and F,(t)=1-F,(t). Then Igzp(a)
can be interpreted as the probability that compbnen

a caused system failure when the system eventually
fails. We will come discuss this point in Sectia.3

Thus, I, (a,t) is the expected rate of transitions at

time t for which componena is critical; the indexr
indicates the relation of the measure to this ttims
rate. In other wordsl, (a,t) dt is the probability that

system failure together with the failure of compaine

3. A Barlow—Proschan type importance a, but of no component other than, occurs during
measure for Semi-Markov systems the time intervallt,t +dt ] In this sensd, (a,t) dt is

the probability that component caused system
failure during the above time interval. Howeverthie
present framework there is in general no sensilale w
to define a notion of a causal relationship between
system failure and that of a component. Therefore,
rather than speaking of a causal relationship, we
should more precisely say that a component is
associated with system failure.

We can also give an interpretation of the normdlize

3.1. Definition and basic properties importance measuré, (a,t :) Provided that system
failure always coincides with the failure of prestis
one component,

In this section we will introduce our component
importance measure for multi-component systems,
using the mathematical framework laid out in Settio
2.1. The time evolution of the system @& will be
assumed to be given by a semi-Markov procésas
introduced in Section 2.2. This setup is general
enough to include systems with maintenance and
repair.

Let i, jOE be two states. We say that a component

all? is critical for the transition of the semi-Markov
process Z if the following three conditions are S (b,t) dt
satisfied: b

C1.0n transiting fromi to j the system fails, i.e.

i0U and 0D is the probability of system failure during the ¢ém

interval Jt,t +dt].
Consequently, using the definition of conditional
probability, 1/(at) can be interpreted as the

probability that componenéd caused system failure,
given that the system fails at tinhe

C2.0n transiting fromi to j componenta fails,
Le.c,(i)—c,(j))=1
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We remark that the notion of component criticality
defined by the above three conditions C1.—C3. ghoul
be subjected to critical scrutiny for the concrete
application under consideration since, for examiple,
view of the underlying notion of association of tgys
and component failure, common cause failures which
take out more than one component in a transition of
the semi-Markov process do not contribute to the
importance measure. If this is not tolerable and
common cause failures are to be taken into acdmunt
the importance measure, condition C3. may be
dropped from the list.

3.2.Calculation of the importance measure

After having introduced a component importance
measure in Section 3.1. we now present a way to
express it explicitly in terms of quantities easily
obtainable from the building blocks of the semi-
Markov processZ. To this end we quote the
following theorem which was proved in [6].

Theorem 2:Suppose that the semi-Markov kernel of
Z is absolutely continuous with respect to Lebesgue
measure, i.eQ; (dt) =g (t)dt, and that

max{Q; (t) i, j DE} =&(t)

(this is the case if the density functiorsy are

assumed to be continuous at 0 foriaflE). Then
the derivative in (3) exists and we have

@0 = 3 Lo P[0, @98,E-9). ()

It is worth noting that the proof of this resulbsély
parallels a method from [14].

With the help of (5) we are able to directly caétel

[, (a,t), provided the Markov renewal functian of
the semi-Markov process is known explicitly. Since
usually the semi-Markov process is specified imter
of its semi-Markov kernel, an additional effort is
required to findg . One possibility is to use the fact
that ¢ satisfies a Markov renewal equation and to
employ the conventional methods of solution, eng. i
terms of Laplace transforms.

However, we can expect a considerable simplificatio
if the semi-Markov process approaches a steadg stat
and the importancé, (a,t gonverges ag — .

This is exemplified by the next result, which is a
corollary to Theorem 2.

Corollary 3: Suppose that the assumptions of
Theorem 2 are satisfied, and assume in addition tha
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Z is irreducible and recurrent. Moreover, suppose
that each functiong;, i,jOE, is direct Riemann

integrable. Then

B ©

IF@=liml (at)= ¥ 1,
te i,j0E i

where 4; is the mean recurrence time of state

In this way we have found a time independent
importance measure which is not subject to the
criticism of time dependent importance measures lik

I, (a,t) or I (at), in that for them the analyst has to

decide at which points of time they are to be eai@d
and compared for different components.

In order to evaluate;'(a ¥xplicitly with the help of
formula (6) the mean recurrence timgs have to be

determined. They can be obtained from the following
system of linear equations:

:uij =m + Z piklukj )
k#]j
or alternatively from

H; =izlrjmj :
JT joE

As in (4) we also define a normalized version of
I7'(a) by

7' ()

I, (a)=b§|ft(b),

which has the property that | ¥ (a) =1.
all”

Remark 4:In Theorem 2 and Corollary 3 it was
assumed that the semi-Markov kernel & is

absolutely continuous. However, in some application
this assumption may be too restrictive. We canvarri
at a generalization of Corollary 3 in the following

way. Let S/, S! ... be the times at which a transition
from statei to statej occur. Then these times form a

renewal process andS),,-S! are iid. with
distribution denoted byH; . Moreover, letN; (t )be

the corresponding counting processvf denotes the
mean of H; then from the elementary renewal
theorem
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E(N. (t t
jm = M) _ 1 E(N, (1) =[1, (2, 9EM, (d9)).
tooo t Vij 0
N . Using this identity and I'H6pital’s rule we can vei
owssince heuristically
N () = X Loy Ny () q
i,j0E A = | ;{_P(a) — Ilm I B(a1t) dt E(M a(t)) (8)

e Ylg(0,1) & E(M, (1))
we find, using a result from [15] concerning, that il

_o 1 (@) dE(M, (1)
e Y (b,t) dE(M, (1)

1
lim=
tooo t

t
E(N, () i,jZDEl(aDCU)V_ij
Now in view of the interpretation ofig(a,t e
i }‘E(Na(t))—_z ]mc_)tﬁ‘. conclude thatl(a,1) dE(M,(t ))is the probabilty
et ijoE o that system failure caused by componentoccurs
during Jt,t +dt].
Thus E(N,(t)) is asymptotically differentiable with  Moreover, since the sum over all components of this
derivative still given by (6). In view of this rdsue expression is the probability that system failuceurs
can sensibly generalize formula (6) also to semi- during ]t,t +dt] it follows that
Markov processes without any further assumptions
about its kernel, and the interpretationidf(a giyen I (a,t) dE(M, ()
above persists. 215 (b,t) dE(M, (1)

3.3.Relation to the classical Barlow—Proschan

importance measure for repairable systems is the probability that system failure is causedaby

given that the system fails at tinhe

In [3] Barlow and Proschan suggest an importance Now letting t — o we see that the steady state
measure for repairable binary coherent systems;hwhi  Barlow—Proschan importance measure can be
can be constructed as follows. Consider a binary interpreted as the steady state probability that
coherent system oh components as introduced in  component a caused system failure, given that
Section 2.3. We suppose that each component issystem failure has occurred. We finally note thiahw

repaired after failure, and that the failure anpare the help of Blackwell's theorem we can conclude
times for componend are assumed to be distributed from (8) that

according to the distributiong, and G,. All failure

and repair distributions are assumed to be pairwise
independent. IfN,(t )denotes the random variable
counting the number of system failures caused by

componenta until time t, the steady state Barlow— where I, (a)=lim I (at), and A and are the
Proschan importance measure for repairable systems B e BT a Ha

g (8) /(A + 4,)

TS L 00, )

is defined by expectations of, and G,, respectively.
Consider now ann component system with semi-
1,(a) :an_ 7) Markov time evolution as introduced in Section 3.1.
e bDZﬂE(Nb(t)) As already remarked, if system failure always

coincides with the failure of precisely one compane

The existence of this limit under the above hypstise | (&t) equals the probability that componeat

follows from a simple application of the elementary caused system failure, given the system failsraé ti

renewal theorem. To arrive at an interpretatiorf79f t.

we denote by M,(t )the number of failures of Hence, if we consider a binary coherent system such

componenta until time t. Then it can be shown that that the probability qf simultaneous failure of two
more components is zero we conclude that the
corresponding steady state importance measure
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I'S'(@)=lim |’ (a,t) equals I$'.(a) provided the component transits to thstbystate since it is assumed
to oo

o that repair includes maintenance.
limit exists. More formally we can prove:

Proposition 5: Consider a multi-component system ® A stby >@ Aup
with semi-Markov time evolution as in Section 3.1, B up B maint
and suppose that the assumptions of Corollary 3 are A *
satisfied. Then
@ A down
B maint
I:st (a):hm E(Na(t)) )
S S EN, (1) v
b ® Arep
. . — , Bup
The proof is a simple application of I'Hépital'sleu
Thus we see that the steady state importance ngeasur * *
|*(a) defined by (6) is a generalization of the ® A down
Barlow—Proschan measure for repairable systems I
13,(a) as defined in (7). A vy
® Aup
4. An example of a two-unit cold standby B rep
system with maintenance and repair +
In this section we present an illustrative exangfla A maint
two component system with maintenance and repair B down
whose time evolution is given by a semi-Markov *
process and, hence, fits in the framework laidiout v
Section 2.1. It serves to explain in which way the |@ Amaint | g @ Aup
component importance measure defined in Section 3.1 B up B stby

can be used in practical applications. The examwgle
present here has appeared repeatedly in the literat
with minor variations, for the first time appargnih

[1], as well as in [5] and [11]. Figure 1 Transition diagram of the semi-Markov

process according to [5]. The shaded states are the

4.1.Description of the system and its time states of system failure.

evolution The system’s states iE can be considered to be pairs

The system consists of two components denoted by of states of each compone#® and B; they are
A and B, i.e. @ ={A,B}. The state diagram of the numbered from 1 to 9 as indicated by the circled

semi-Markov process describing the system’s time numbers inFigure 1 The system delivers service if
evolution is pictured in Figure 1. there is at least one component in tigestate, hence

There are altogether 9 states, iB={L..., :3he the system is down (i.e. unable to deliver servioe)
. L ~ 7. . the states 7, 8 and 9 (indicated by shadésgure 1).
transitions between the states with non-vanishing

" . ) . ¥ Thus using the notation of Section 2.1 we have
transition probability are depicted by arrows in
Figure 1. Besides being in an “up” condition in @i
it delivers service, each component can be on biand
indicated bystbyin Figure 1.
In the standby condition a component delivers no D={7.89}.
service, but it is assumed that upon failure ofdtieer
component it can start up immediately to ensure the Moreover, c,(i)= 1if i=1 4,6, and c,(i)= O if

functioning of the system. i= 235789, and analogously for componeBt,
Preventive maintenance is carried out periodicaily ie. c,(i)=1 if i=235 and c,(i)=0 if
. . B - — y h B —

both components, indicated byaint in Figure 1. o _ o
During maintenance a component cannot deliver ! = 14.6.7.89. In view of the conditions C1.-C3.
service. If a component has failed it is in thewn stated in Section 3.1 we can write the sets ofcaliti

state; after failure it can be put in a repair estas transitions C, and Cg for the components as
indicated byrep in Figure 1 From the repair state the  follows:

U= {1,23456}
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C, ={(47), 69)}, C;={(28),(59)} So far due to various time constraints of the asthor
no numerical results forl®(a )or 1(a) are
where the ordered paifi,j Yenotes the transition available, but it is planned to study the dependenfc

from statei to statej. these importance measures on the system parameter
In the following we describe the time evolutiontbé such as the failure or repair rates in the contéxhis
system in more detail. The compone#itsand B are example.

assumed to be independent with exponential life Moreover, it is planned to study our importance
distributions, with failure rates A, and As. measures also for examples of further systems lakeyon

Maintenance is carried out alternately #n and B the_ one presented in this section, in particulae on
: : : which is relevant to nuclear safety.
after ¢ units of time of service and lasts exactly

units of time.

Thus, if no failure occurs the system cycles thfoug
states 1, 2, 3 and 4, with a fixed sojourn in eath [1] Barlow, R.E. & Proschan, F. (1965). Mathematical
these states. If componeBt fails while the system is Theory of Reliability. SIAM Series iAppl. Math,

in state 1,B is repaired andA continues to deliver Wiley, New York.

service (state 6). The repair times are assumdmketo [2] Barlow, R.E. & Proschan, F. (1975§tatistical
independent and exponentially distributed with fiepa Theory of Reliability and Life Testing. Probability
rates i1, andug , respectively. If in state 6 component I\\(/Io?(els Holt Rinehart and Winston, Inc., New
A fails before the repair of componerB is OrK.

completed, the system transits to state 9, yielding[3] Barlow, R.E. & Proschan, F. (1975). Importance of
system failure. Otherwise the system transits dack system components and fault tree eve@sch.
state 1. From state 9 transitions to states 5 are6 Proc. Appl 3, 153-173. -

possible, depending on which repair is completed [4] Boland, P. J. &.EI-Newelhl, .E' (1995.).' Measures
first. Analogously, a transition from state 1 tatst5 of component importance in reliability theory.
occurs if componenf fails; thenA is repaired and Compgt. Op. Re22, 455_463' .

B ensures system operability. If a component fails [5] Csenkl,. A, (1995): A.n. integral equation approach
while the other is in the maintenance state (ttams to _the mtgrval rehability of systems modeled by
from 2 to 8 and from 4 to 7), system failure occurs finite semi-Markov processegeliab. Eng. Syst

It is assumed that the system remains a fixed amoun Safety{l?, 37-45. s I

of d units of time in states 7 or 8, respectively, [6] Csenki, A. (2007) Jo!nt interval reI_|ab|.I|ty fqr
modeling the amount of time necessary to abort Markoy _systlt_ems IWIE)hI aRnI' gppll_zlcatlog n
maintenance and put the corresponding component to transmission fine refiability.Reliab. Eng. Syst.

service (transitions to state 5 and 6, respectjvély Safety 92, 685-696.

- - - 7] Grabski, F. (2010). Semi-Markov reliability model
symmetry, the same considerations apply with stateé
A andB interchanged. of the cold standby systerd. Appl. Quant. Meth.

A semi-Markov kernel Q(t ) leading to a semi- 5, 486-496.

_ _ [8] Hellmich, M. & Berg, H.-P. (2012)Component
Markov process modeling the system behavior as

X _ : - importance for semi-Markov syster®seprint.
Eje]scrlg?g]ln the previous paragraphs has been given g1 seby, A. B. (2004)importance measures for
5] an .

: _ _ _ multicomponent binary systemsStatist. Res.
Since this semi-Markov kernel contains components Report No. 11, Dept. of Math., Univ. of Oslo.

which are not absolutely continuous with respect t 10] Korolyuk, V.S., Brodi, S.M. & Turbin, A. F
Lebesgue Measure (due to the fixed sojourn time (1975). " Semi-Markov brécesses and  their

References

given that the process jumps, e.g., from statestate applicationsJ. Math. Sci4, 244—280.
2), we have to use Remark 4 and (5) to calculatFll] Limnios, N. & Oprisan, G. (2001)Semi-Markov
17(a) and*(a). Processes and ReliabilitBirkhduser, Boston.

[12] Natvig, B. & Gasemyr, J. (2009). New results on
4.2.Concluding remarks the Barlow—Proschan and Natvig measures of

component importance in nonrepairable and
repairable systems.Methodol. Comput. Appl.
Probab.11, 603—-620.

[13] Natvig, B. (2011). Measures of component
importance in nonrepairable and repairable
multistate systems.Methodol. Comput. Appl.
Probab.13, 523-547.

In the present paper we have reported about a
component importance measure for multi-component
systems with semi-Markov dynamics, which was
introduced in [8].

An illustrative example of a two component system i

the semi-Markov framework with maintenance and/or
component repair has been given.

154



Journal of PolishSafety and Reliability Association
Summer Safety and Reliability SeminMelume 3, Numberl, 2012

[14] Ouhbi, B. & Limnios, N. (2002). The rate of
occurrence of failures for semi-Markov processes
and estimationStat. Probab. Letb9, 245-255.

[15] Stormer, H. (1970).Semi-Markoff-Prozesse mit
endlich  vielen  Zustdanden: Theorie und
Anwendungen. Springer Lecture Notes in
Operations Research and Mathematical Systems
Vol. 34, Berlin, Springer.

[16] Van, P.D. & Barros, A. (2008). Reliability
importance analysis of Markovian systems at
steady state using perturbation analysieliab.
Eng. Syst. Safet93, 1605-1615.

[17] Veeramany, A. & Pandrey, D.P. Reliability
analysis of nuclear piping system using semi-
Markov process modeReliab. Eng. Syst. Safety
38, 1133-1139.

155



Hellmich Mario, Berg Heinz-Peter
An importance measure for multi-component systeithsSemi-Markov dynamics

156



