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Abstract

The reliability characteristics and parameters aflthstate systems modelled by the finite stategrass
characteristics and parameters of multi-state systenodelled by the finite states regress semi-Marko
processes are investigated in the paper. Preshatedmodels deal with un-repairable systems. Thengial
concepts of discrete states and continuous time-lgkamkov process theory deliver. Mathematical appas
for models constructions and analysis. Multi-sta@bility functions and corresponding expectagiosecond
moments and standard deviations are calculatettiégpresented systems.

1. Introduction

Some concepts of a semi-Markov process theory [2],
[31, [4], [7], [9], [12] are applied to construe
reliability model of an object. Markov and semi-
Markov processes for modelling multi-state systems

are appli%d in many different rel?ability problel[éllz}, O@ @ @ @ @
[4], [5], [6], [7], [8], [10], [11]. We will consigr
systems with finite sets of the ordered reliability
statesS = {0,1,...n}, where the statd is the
worst while the statm is the best. We suppose that
the probabilistic model of reliability evolution tiie
system is a stochastic proce{X(¢): ¢ > 0},
taking values in a state sS = {0,1,...n}, with
the right continuous trajectories and a flow graph

WhiChgiS a coherent sug;-graph of the graph gh?wn in @ ) @ ) @ ) @ ) @
Figure 1 That kind of stochastic process is called a

process of regress. Examples those kind of graphEigure 3.Example of a flow graph of a regress

are shown irFigure 2andFigure 3 process

Figure 2 Example of a flow graph of a regress
process

2. Essential concepts of a discrete states and

continuoustime semi-Markv processes theory
A The semi-Markov processes were introduced
C@ C@ O@ C@ independently and almost simultaneously by P. Levy,
W.L. Smith, and L.Takacs in 1954-55. The essential
U developments of the semi-Markov processes theory
were proposed by Koroluk & Turbin [7], [8],
Limnios & Oprisan [9]. We will present only semi-

Fi 1A | fl h of Markov processes with a finite state space. Uguaall
'gure 1.A general Tlow graph of a regress process gemi_pmarkov process are constructed by the so

called Markov Renewal Chain{én:?Un:n € NO},
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§n €5, Un €[0,%0)  which is a special case of Fij(t) = P(rap1—7n <X (70) = i, X(7011) = j) (8)
two-dimensional Markov sequence, such that the

transition probabilities depend only on the diseret is a cumulative probability distribution of a ramdo
coordinate: variableT;; that is called a holding time of a stife

if the next state i.J. From (6) we have
(511+1 - Ja lgn—l—l t|€n - L l9n - fn})

=P(ény1 =, Ony1 <& = 1) Qij(t) = pij (1) )
and
. . From (7) it follows that a semi-Markov process with
P(&o = i,00 = 0} = P{& =1). a discrete state space can be defined by thettoans
matrix of the embedded Markov chain
The matrix P =p;;: i,j € S] and a matrix of CDF of holding
o times: F(t) = [F;;(t): i,j € S]. A semi-Markov
Q) =[Qi(t): d.jes], t>0, (1) process {X(t): t >0} is said to be regular if the
h corresponding counting proce{v(t) : t > 0} has a
where finite number of jumps on a finite period with
. . robability 1:
Qut) = Pléusr = jitn <t & =1) @ PO
P(v =1 10
is said to be the renewal kerneét /\ (10)
teRy
0=0, =014+ 0 3) Every semi-Markov process with a finite state space
is regular [ 8 ].
The stochastic process{v(t) : t > 0}, given by Let
v(t)=n for te€[rm,mt1), n€ No. (4) Pip(t) = P(X(u) € B, Yu € [0, t]| X(0) = 1),

is called counting process.
The stochastic proce{ X (t): t > 0}, defined by the

formula denotes a probability that the whole time d0, ¢]

the states of the process belong to a suliBeif an

X(t) =& for t€[mmoi1), 1€ No. (5) initial state isi € B. .
As a conclusion from theorem 3.9 [9] we obtain a

is said to be the seml -Markov process given by theheorem: ‘ .
renewal kernel@(t) Functions Pp(t), i€ BC S, satisfy system of

From the above definition it follows that the semi- integral equations
Markov processes keep constant values on the half- '
intervals. From the definition of the semi-Markov /

. Pip(t)=1—-G;(t)+ P; dQ);
process it follows that the sequence Q )+ | Pinlt—2)dQy (@)
{X(m): n=0,1,...} g 4 homogeneous Markov icB.
chain with transition probabilities

(12)

Using Laplace transformation we obtain system of

DPij = P(X(Tn-H) = J"X(Tn) = 1) :thﬂnolo Qij (f) (6) linear equation
. ~ 1
The function Pip(s) = - - ) + Z dis (s
G7(t) = P(Tn+1 —Tn X t|X Tn = L ZQU (7) ie BJGB
Jes (13)
where

is a cumulative probability distribution of a ramdo
variableT; that is called a waiting time of the stite o
The waiting timeZ; is the time spent in staievhen i (s) = /OC e=1dQy;(t). Gi(s) /‘e_stGi(t)dt
the successor state is unknown. The function 0 '
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~ . o —st QOO(t) 0 0 0
Pols) = [ e Pt Qult) Qu(t) o 0
Qt) = Q20(t) Q21(t) Q22(t) 0
If B is a subset of the working states then the @so(t)  Qait)  Qsalt) 8
function Qno(t) Qni(t) --- s Qun(t)
Ri(t)=P;p(t), i€BCS (14) (19)
A ding fl h fo: = 4 is sh [
is the reliability function of a system with thetial Figg:éels_pl_o(;t R .

state; € B att = 0.
The cond_itional reliabi_lity functions satisfy the Ty = int{t : X(t) € A} (20)
system of integral equation

¢ where
Ri(t)zl—Gi(t)-i- /R(t—l‘)dQl(U),
f;?o ! ! A =10,...,1 =1} and Afl]:{l,....,n}.
i€B (15)

The function

Using the Laplace transformation we obtain the

, — _ . /
system of linear equations iy (1) = P(Ty < HX0) =10), i€ Ay

(21)

| =

represents the cumulative distribution function

—Gils) + '21:3 Gij (5) 15 (s). (CDF) of the first passage time from the si € Aj,
J€E
icB (16) to the subseAy; for {X(t):¢ > 0}. If X(0) =n,

then the random variab/T}; represents the lifetime

The inverse Laplace transforms  of the functionof the one component system in the sulAjt A
which are the solution of the above system equationcorresponding reliability function has a form
are the conditional reliability functions

Ri(s) =

VAl

.

RZ. (t) _ P{T S IL|X(O) _ Z}’ Z c B (17) Rn[l](t) = P(Tm > f|X(0) = 71) =1- q)nA[l] (t) (22)

. : . I On the other hand
whereT' is a random variable denoting a lifetime of
the system. Applying formulas P(Tyy > t]X(0) = n) =

E(T|X(0) = i) = lim Ri(s) = P(X(u) € Ay, Vu € [0,4]| X(0) =n).  (23)

. e (18)
E(T?|X(0) = i) = =2 ll_{%[R;(S)] In this case we have
we obtain a conditional Mean Time to Failures and P(Tyy > t|X(0) =n) =
corresponding Second Moment = P(X(t) € Afy | X(0) = n). (24)

3. General semi-Markov model of the system Applying equations (16) we obtain the system of

damage linear equations for the Laplace transform of
We suppose that the state of the system is dedcribe reliability functions

by the semi-Markov process which is defined by the
renewal kernel R

» | =

= Gils)+ Y () Rp(s),

J€AY
i€ A’[,]. (25)

i[l](s) =

where

103



Grabski Franciszek
Semi-Markov model of system damage process

Gi(s) ~SLG(t)dt, e~ Ry (t)dt

76 Ripy(s) —7

are the Laplace transforms of the functions

Gi(t), Rip(t), t > 0. Passing to matrix form we get

(1=, (5)) Ry () = Gy (5) (26)
where

L= |3 i.j € Af]
is the unit matrix,

g () = [dij(s) i € Afy] (27)

T
- . ,
Gy, (5) {1—2% .7€A]] ,
jES

N . 1T
A vector function

R(s) = [Ru(s) Ru () Bupa(9)] g

is a Laplace transform of multi-state reliability
function of the system.
Example 1
Let S =10, 1,2,3}_
Hence
1] — {0}- AllJ = {1a233}7
2] — {Oa 1}7 AI[Q} = {2a3}ﬂ
51 = {0,1,2} A/[?ﬂ = {3}.

The matrices from equation (35) for I=1 take
form

1- 611(8) 0 0
I- QAh]( s)=1 qu(s)  1—qoals) 0 ,
31(s) @2(s) 1 —qs3(s)
(29)
N [ 11— Guo(s) = qui(s)
f(8) =1 | 1= @0(s) — Gaals) — Ga(s)
| 1= G30 — G31(s) — Gs2(s) — Gas(s)

We are interested in an elemer}?gm(s) of the

solution
]?1[1](5)
Roypy(s) | -

Rs[l](é')

RA’[I] (s) (30)

This Laplace transform is

= _ 3 (s)
(1= q11(s))(1 = Ga2(5)) (1 — G33(s))’

(31)

(s) —
)30

2(s
0(s)
) —

330(5)

(s

— G22(s) + Gu1(s) G2
7 ( )as0(s) — qu1(s) e
( ) 22(8)G31(s) —
q10(8)Ga1(s)

(32
33
( )%3(5) = qu1(s ]

7
(s
G22(8)33(5)

32
(s)
The matrices from equations (30) fd=2
form

take

1 — G2a(s) 0 ]

I_QA () [ g2(s)  1—gsa(s)

|

By solving (26) we get

Gy, ()

1 —Goo(s) — @21(5) — Go2(s) ]
[2]

1 — 30 — G31(8) — @32(5) — G33(s)

~ ’&2(8)

B = e

where

t2(s) = 1 — Gaa(s) — @30(s) — @33(s) — G31(s)
+G22(5)G31(5) — G20(5)G32(5) — Go1(5)q32(s) (34)
+G22(5)q33(8)) + Go2(8)d30(5)

The matrices from (26) fol=3 take forms
T—Yu (s)=[ 1—dss(s) ]

~ 1 5 5
ary(s) =~ [ 1= 30— Gai(s) — Gaa(s) — Gaz(s) |

L)

Now, a solution of (26) is
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~ 1 —G3o — G1(s) — @a2(s) — G33(s) Quoo(t) 0 0 0
R3[3](S) - S (1 _ 633(3)) 3 (35) QlO(t) 0 0 0
Q) = Qo0(t) Qau(t) 0 0
For lots of cases the elements Qso(t) 0 Q3(t) 0
Qii(t), i=1,2,...,n are equal to 0. Let us . 0
suppose that L Qno(t) 0 Qnn-1(t) 0 ]
Qoo(t) 0 0 0 where
Quo(t) 0 0 0
Q(t) = . (36
© Qa0(t) Q(t) O 0 (30) Qrr—1(t) = Pl <t,Ce > i) = ftG*A’”"Bfk(JC)dI
Qs0(t) Qs1(t) Qs2(t) 0 . 0
Qro(t) = P(Ce <tome > ) = [ Ape™7[1 = Fy(a)]dx
From (39) — (44 ) we obtain 0
N i3(s) fork=1,...,n.
Ry1y(s) = P (37) To explain this model we assume tin = 3 and we
suppose that the random variabn, k£ =1,2,3
u3(s) =1 —go(s) — quo(s)dai(s) have the gamma distribution with parameters
—G20(5)d32(5) — G10(5) a1 (5)ds2(5). ap=1,2,...and ;, >0 with PDF
- N ua(s) N ﬁg’“ xok—le=Pra
R3[2](‘5) — s ’ (38) fk(‘[’) - (ak _ 1)| (40)
ta(s) = 1—dso(s) — ds1(s) In this case a Semi-Markov kernel is
—Q20(3)Q32(S) - CJ21(8)C]32(S)
. Qoo(t) 0 0 0
an Quo(t) 0 0 0
t) = 41
e o1 (5) — () Q) Q20(t) Q21(t) 0 0 (4D
Rarr(s) = — 430 — 43115) 43215 Qs0(t) 0 Qs2(t) 0
RSB] ('5> S ° (39)

Let us notice that this matrix is equal to the matr
A Laplace transform of the multi-state reliability (36) from the example 1 with @31(t) =0,

function of that system is Therefore we can apply equalities (37), (38) and

B ~ . ~ . (39) to calculate components of multi-state
R(s) = [Rg[o](s),Rg,[l](s),Rg[z](s),R3[3](.s)]. reliability function. Finally we obtain Laplace
transforms:

4. Multi-state modd of two kind of failures 5(s)

We assume that the failures are caused of weay or Rypy(s) = s 42}
some random events. There are possible only th%(s) =1 — Gso($) = Goo(8)d32(5) — Giro() o (8)Gaa(s),
state changes frokato & — 1 or from# to 0 with the

positive probabilities Rigure 2. Time of change i (s)

from a statek to k—1, k=1,....n because of Ip(s)=—_ (43)
wear is assumed to be a nonnegative random variabli, (s) = 1 — Gso(s) — oo (5)ds2(5) — Go1(5)ds2(s)

nx With @ PDFfi(x), > 0. Time to a total failure

(state0) for the system in the stakeis a nonnegative g

random variable(;, exponentially distributed with a

parameter \;. Under those assumptions the . ; 1 — G30 — G32(s)

stochastic procesd X (1) : ¢ 20} gescribing the 313 (5) = s ’ (“44)

reliability state changes of the system, is theisem

Markov process with a state speS ={0,1,....n}
and a kernel

where
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5 _ B3 A1 (s4281+)1)
qio(s) = GHBLEA)’ T GHmeaE
~ ~ A2 (s 2+ A
g21(s) = W’ G20(s) = %7 (45)
~ G ~ A3(s4+2B3+A
B52(5) = Gommys daols) = SRS
For a numerical example we take
a; =2, (1 =0.04, A\ =0.004,
as =2, [>=0.03, X\ =0.002, (46)

Q3 = 2, ,83 = 0.02, /\3 = 0.001.

Substituting the functions (45) with parameters) (46

to equations (42), (43) and (44) we obtain

w1 (s)
(0.021 + 5)2(0.032 + 5)2(0.044 + 5)2

Rypy(s) =

where

1 (s) = 1.59533 10~7 + 0.000014s + 0.00062652 +

Raat!

10+
08
06
04

02}

Figure 4. Components of Multi-State Reliability
function

The corresponding expectations, second moments
and standard deviations oflevel system lifetime
we calculate using formula’s

0.0152245% 4+ 0.193s% + 57, ma[l] = [E[Tp| X (0) = 3] = lim Rs[]( s), 1=1,2.3,

5 mz[l] EIT3IX(0) = 3] = —2 ;g%[ Rl (9)):
an

= /ma[l] = [ma [I]]2.

i (s) 0.000066784 + 0.004048s + 0.1055% + 53 For the diven parameters we get

S) = R

302 (0.021 + 5)2(0.032 + 5)2 givenp g

, mq[1] = 182.48, my[2] = 147.89, my[3] =92.97
]§3[3](3) — M' mo[1] = 41960.1, mo[2] = 28727.2, my[3] = 13173.5
(0.021 + s)? o[1] = 93.06, o[2] = 82.80, o[3] = 67.30.

As the inverse Laplace transforms we obtain5 |nverseproblem for smpledamage

reliability functions

Ry () 52.6698¢ 0044t 4 58 97700032t _
109.947¢0021 4 0.189036e 0+
1.17355¢~ 0032 ¢ 4+ 0.509862¢~0-0211¢,

Rypy(t) = 21.3373e7 0032 — 20.3373¢70:0210 4
0.0991736e~-032¢ + 0.155537¢~-021¢,
Rapsy(t) = e %021 (1 4 0.02¢).

These reliability functions are shownFkigure 4

106

exponential model

We suppose that there are possible the state ebang
onlyfrom £ to k-1, k=1,2,...,n with

the positive probabilities. Now, the stochastic
process{X(t) P> 0}, describing reliability state
changes of the system, is the semi-Markov process

with a state spacS, ={0,1,-...n} and a kernel
[ Qoo(t) 0 0 0]
Quo(t) 0 0 0
an={y o™ b0 o |
0 T e

For simplicity we assume = 3. From equations
(42), (43), (44) we obtain the Laplace transfoohs
the multi-state reliability function components.
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Ry (s) = 1 — q10(8)g21(5)G32(s) )

s | Qu(t) =1-(1=3) et 130,
5 L 1= qoi(s)Gza(s)
R3[2]<'5) = S s (49) QQl (t) =1— (1 _ :\\_z) e—/\gt7 t 2 07
Rgm(é) = L?)Q(S) (50) Qs32(t) =1— €_>‘3t, t > 0.

S

The Mutli-State Reliability Function is called !herefore the CDF of the waiting timc; (7) for
exponential if all of its component ( except of the states=1andi=2 are
Rn[o](t) ) are exponential functions [6], [13], [14]. In

above presented model it means that Gi(t) = 0 for 2<0
1— (1—%)6_)‘1’5 for t>0
- 1 B
R‘[(S): s 121,2,3
. 5+ A Ga(t) {0 for t<0
2(t) = A\ -t g
1—-(1—-4%2 2t f t>0
We set the following problem. Find elements ( *3) ¢ or
Qri-1(t), k=1,2,3 and for | =3 we have
of the semi-Markov kernel. For calculating these G(t) :{ (1) i ior; t;g
functions we have to solve a following system of - ¢ or =
equations
Theorem 1.
1 1 — G10(5)G21 (s)Gsa(s) 51 or multi-state exponential reliability function
F Iti ial reliability functi
s+ N\ s ’ (51)
R(t) = [1, e~ Mt et e_’\"t] ,
1 1 —g21(5)q32(=
< _ Q21(6)Q32(9)7 (52)
st § where
1 1 — G3a(s
= qu((s), B3) <A M <XAa<...<\.
s+ A3 S

where the CDF of the waiting time7}. of the semi-
Markov process defined by the kernel (56) is

0< A\ <X < As.

0 for t<0
A solution of this system equations are Laplace Gi(t) = 1-— (1 — %) e Mt for t>0
transforms i

, for k=1.....,n—1 and
~ A (s ) )
uo(s) = 2.

A2(s+A3) Gn(t) =

N for k=n
G21(5) = iy

0 for t<O0
1l—e Mt for >0

Gs2(s) = 2% Proof: The same as far=3.

We obtain the functionsQys_1(1), k =1,2,3 as Since, the probability distribution of the

. random variablel,, k=1,2,...,.n—1isa

the inverse Laplace transforms of : : :
mixture of a discrete and absolutely continuous
distribution.

~ 01.1._1(8
Qk:k:—l(s) = L;()., k= 1,.2,3
' Gr(t) =pG\ (1) +¢G(t), k=1,..n—1
Since we obtain
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where
_ 1
p_/\IH-l’ q_]- ’\’H—l.'
(d) _ 0 for t<0
Gy (1) = { 1 for t>0 "
. 0 for t<0
GS‘)(t):{ 1—e Mt for t>0 -

It follows from the above presented theorem that

Ak
/\k+'l

L o k=1,...
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