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1. Introduction 
 

Safety and reliability optimization problems are a 
fundamental components intrinsically in the sense 
that the statistical theory underlying them is built up 
by a pile of relevant mathematical optimal theories 
and methodologies. Particularly, in safety and 
reliability modelling practices the maximum 
likelihood estimation plays an important role. 
Therefore, it is necessary to improve the efficiency in 
searching the optimal solution of a likelihood 
function.  
Different searching schemes have different 
efficiency. The standard derivative-orient scheme, 
the Newton-Raphson procedure is the commonly 
engaged, see [1], [10], [11]. However, more and 
more searching schemes are utilizing non derivative-
orient schemes, for example, merging likelihood and 
genetic algorithm to avoid derivative computations.  
The lambda algorithm is created by imitating an 
ancient human body system, see [4], [6], [7]. In its 
searching scheme, except the necessary mathematical 
computations for evaluating the objective function 
and the creation of the initial “searching population” 
randomly, the algorithm only involves if-else logical  
 

 

 
operation and sort procedure. In contrast to existing 
global optimization algorithms, particularly GA, the 
lambda algorithm engages the simplest mathematics 
but reaches the highest searching efficiency.  
The remaining structure of the paper is stated as 
following: Section two serves the introduction of 5-
element string and the presentation of an Euclidean 
vector; Section three will features of the lambda 
algorithm; Section four will discuss the operators 
engaged in the lambda algorithm and identify the 
Markovian features of the searching scheme; Section 
five reserves for testing the new algorithm, Section 
six proposes the merging of lambda algorithm and 
likelihood searching procedure and a reliability 
application and Section Seven conclude this paper. 
 
2. Five-element string and Euclidean vector 
presentation 
  

In this section we utilize the Rosenbrock’s function 
as an example for introducing the lambda algorithm.  
Assume that the two-dimensional Rosenbrock’s 

function, ( ) ( ) ( )2 22
1 2 2 1 1, 100 1 ,f x x x x x= − + −  which is 

the objective function under investigation. There are 
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many local optimal solutions, but we are interested in 
obtain the global optimal solution of f. 
Similar to the genetic algorithm (GA) binary string 
representation, whose element set is Θ={0,1}, the λ-
algorithm takes elements from a 5 element-set, which 
takes a membership set Θ={0, 1, 2, 3, 4},  to 
construct a string candidate solution which  
represents the candidate solution, Euclidean vector, 
x , in the 2-dimensional Euclidean space2R  in term 
of a linear transformation.  
Definition 2.1. A string in an algorithm, denoted by 

1 2 ,le e e e= L is a sequence of l elements from the 
membership set Θ.  The total number of the elements, 
l , composed of the string e is called the length of the 
string. 
Definition 2.2. In a string algorithm, in order to 
represent an n-dimensional Euclidean point 

( )1 2' , , , nx x x x= L , a string e is typically constituted 

by n segmental strings, whose length are u, i.e., the 
string 1 2 ne e e e= L  with length l nu= , where the 

thi segment of the string, or thethi segmental string, 

, ( 1) 1 , ( 1) 2 ,i i u i i u i i iue e e e− + − += L , is of  length u , 

(i=1,2,L  ,n). 
Definition 2.3. A triple ( ), ,m u n is called string 

configuration, where m = total number of elements in 
the membership set Θ, u = the length of segmental 
string , ( 1) 1 , ( 1) 2 ,i i u i i u i i iue e e e− + − += L , and n = total number 

of segmental strings composing of the string 

1 2 ne e e e= L . Let { }: ie e= ∈ ΘS denote the string 

space generated from m-element membership set mΘ  

and ( ) ( ){ }1 2, , ,
:

in mm u n i j
e e e e= ∈ ΘLS the ( ), ,m u n  

configuration string space on mΘ . 
Example 2.4. A string with configuration triple (5,6,2) 

1 2e e e= represents a 2-dimensional candidate solution 
( 1X , 2X )  for Rosenbrock’s function with two 
segmental strings, 1e and 2e . For example, 
 
1 3 4 1 4 0 0 1 2 2 3 0 

 
The first segmental string,1e , is constituted by the 
first 6 elements, for example, 1e = 1 3 4 1 4 0, which 
represents the variable 1X , while the second 
segmental string,2e , is constituted by the seventh 
element to the twelfth element, i.e., the second six 
elements in the string, for example, 2e =0 1 2 2 3 0, 
which represents the variable 2X . The string length 

2 6 12.l = × = The correspondence between each 
segment string and X can be also labelled as 
following:    

21

1 3  4  1  4  0  0  1  2  2  3  0
X X

142 43 14243  

Let 
1 1

1 min max,D u u ≡   be the searching domain of1X ; 
2 2

2 min max,D u u ≡   be the searching domain of2X ; 
1 1
min max,u u  be the lower bound and upper bound 

of 1X ; 
2 2
min max,u u  be the lower bound and upper bound 

of 2X . 
Then, equation (1) and (2) specify the relationship 
between ( )1 2,X X  and string 

1 2 1 2 6 7 8 12e e e e e e e e e= = L L : 

   ( )
6

61 1 1
1 min max min 61

5

5

j

jj
X u u u e

−

=
= + − ∑  (1) 

   ( )
12

122 2 2
2 min max min 127

5

5

j

jj
X u u u e

−

=
= + − ∑  (2) 

where ,  1,2, ,12je j = L denote the elements taking 

numbers 0, 1, 2, 3, 4 in the string.  
Definition 2.5. A configuring ( ), ii j indicates the 

thi segmental string and the thj element (position) in 

the thi segmental string. 
Once we setup values of 1 1

1 min max,D u u ≡    

and 2 2
2 min max,D u u ≡   , the fitness value of a objective 

function ( )f x  fitness value is readily to calculate 

according to equation (1) and (2). 
A natural question will be raised: why does GA not 
offer the convergent power as high as the lambda 
algorithm does? In traditional binary strings 
represented algorithms, the chance of appearance of 
0 or 1 element in the strings is 50%  to 50% of each. 
The element repeated and unrepeated chances are 
equal, which let us feel difficult to draw any useful 
information from both repeated and unrepeated 
events respectively.  
In the Table 1, we use configuration triple (2,6,2) to 
specify the string. In other words, (2,6,2) represents 
membership set Θ={0,1}, segmental string length 6, 
and 2 segmental strings. 
 
Table 1. The binary element strings (2,6,2) 
 

1 0 1 1 0 1 0 0 1 1 0 1 
1 1 0 1 0 0 0 0 1 0 1 0 

 
Similarly, in Table 2, (5,6,2 ) represents membership 
set Θ={0,1,2,3,4}, unit string length 6, and 2-
segmental string. 
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Table 2. The five-element (5,6,2 ) strings  
 

2 3 4 4 2 1 3 3 2 1 0 0 
2 1 1 3 1 0 4 3 2 3 0 1 
2 2 4 3 0 1 2 4 3 2 1 1 
1 2 4 3 0 1 2 4 3 2 1 1 
0 1 2 3 4 1 0 2 2 3 3 0 

 
Assume that a column of strings is ranked according 
to their fitness values (from minimum to maximum), 
if we select top 5 ranked strings as a sample, see 
Table 2, the first knowledge we learn from it is that 
their fitness values are less than any other strings. On 
the other hand, in the lambda algorithm, the repeated 
chance of each element is 20%, see Table 2. That 
means that in the sample, if 3 out of 5 are repeated 
with a particular element at any position, then the 
repeated chance of the element in this position is 
60%, which is much higher than 20% (in binary 
string cases). This phenomenon is the second 
knowledge we would like to know. Even we might 
interpret this phenomenon as a consequence of  
randomization. However, under a perfect circulation, 
we might consider the extra 40% chance would be 
induced by their smaller fitness values. This 
phenomenon shows us the convergent tendency 
toward the optimal solution is higher than that of GA. 
To highlight the global convergence tendency role in 
element numeration in the lambda algorithm, we 
divide element events into 3 categories: repeated one 
time element events, repeated two times element 
events and unrepeated element events. The lambda 
algorithm draws useful information from all three 
categories, to construct an intrinsic  scheme towards 
global optimization. 
 
3. Features of string representation  
 

We should be aware that in searching and selecting 
candidate solution the λ-algorithm utilizes the 
information contained in the value of an element, the 
element position in the segmental string, and the 
sequential order of the segmental string. Note that 
the transformation matrix plays a vital role for 
linking a string of length nu , 1 2 ne e e e= L , where the 

thi piece of the string, or thethi segmental string, with 
length u , , ( 1) 1 , ( 1) 2 ,i i u i i u i i iue e e e− + − += L , (i=1,2,L  ,n), and 

an n-dimensional Euclidean point ( )1 2' , , , .nx x x x= L  

In other words, the global search strength mechanism 
lies on that the weighting system, i.e., 
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,0,0,0,0,0,0 , the weighting 

system assigned to the  6 members in the second 

segmental string create the possibility that change in 
the element ij  (position) of the t hi segmental string 
will have different impacts because different position 
has different weight. A ( )5,6,2 string, denoted by 

71 22 8 16 ,e e ee e eLL , the blue-color elements are the 

first segmental string, representing 1x , the red-color 
elements are the second segmental string, 
representing 2x . Logically, changes in elements 1e  

and 7e  will result in large changes in 1x  and 2x  
respectively, because the highest weight 0.2 is 
assigned to them, while changes in 6e  and 12e  will 

result in the smallest changes in 1x  and 2x  
respectively, because the lowest weight 0.000064 is 
assigned to them. Therefore, a well-constructed 
string element shift scheme will have a balanced 
global searching capability as well as local fine-tune 
capacity. 
Example 3.1. Define 10

min 10u = - , 10
max 10u = + , 

then 10
max min 2 10ru u u= - = ´ . String 1 in Table 3: 

1 2 4 3 0 1 2 4 3 2 11 is the base for observing the 
impacts from string element changes. String 2 
changes the first element of the first segmental string 
in String 1 by adding 1 and the first element of the 
second segmental string by adding 1, which is the 
smallest shift in size at highest weight 0.2. The 
change in 1x  and 2x  is quite large with distance 
5656854249.5. However, String 3 changes the sixth 
element of the first segmental string by adding 3 and 
the sixth element of the second segmental string by 
adding 3, which is the largest shift in size at highest 
weight 0.000064. The change in 1x  and 2x  is much 
small with distance 202276452.4. Table 3 lists the 
changing effects for comparisons. 

 
Table 3. The Impacts of Weights in Global Searching 
and Local Tune-up 
 

String 
1x  2x  x∆  

1 2 4 3 0 1 2 

4 3 2 1 1 

-3662720000 1751680000  

2 2 4 3 0 1 3 

4 3 2 1 1     337280000 5751680000 5656854249.5 
1 2 4 3 0 4 2 

4 3 2 1 4 -3460480000 1755520000 202276452.4 

 
It is critical to emphasize here that the global feature 
of a string algorithm is also materialized by the range 
parameter setting, i.e., the setting of ( )min max,u u . The 

larger max minru u u= - , the better global coverage is 
intended. 
Examining thethi component of x , ix , which is a real 
number, for example, 7.5673ix = , traditional 
optimization schemes may be shift 7.5673ix = by a 
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small increment, say, 0.005, it is intuitive that by 
changing at digit level of a real, the scheme remains 
at a local algorithm nature. Therefore, the globally 
and locally simultaneous searching feature of the 
string scheme will definitely speed up the global 
optimization algorithm. By repeated and unrepeated 
(string) elements numerated from high weight 
position (i.e. element of a segmental string) to lower 
weight position within the strings (the candidate 
solution strings), in terms of sort and pack scheme 
repeatedly until the final optimized solution is found. 
Our computation experiences show that in searching 
the final global optimal solution, it is often the case 
that the first 3 or 4 positions (high weight elements) 
in a string (if the string size is 6) could adequately 
secure the main searching path toward the final 
optimal solution globally. Nevertheless, the lower 
cell elements are able to change for fine-tuning ix  in 
small increment manner, which allows the searching 
scheme to access the final optimal solution with 
amazingly high precision.  
 
4. Operators in lambda algorithm     
 

In this section we will systematically explore the 
mathematical operators in the lambda algorithm. For 
this purpose, it is necessary to introduce more 
notations. 
 
4.1. String vector 
A string vector, denoted by1e , is a column vector 
taking strings as its components. The dimensionality 
indicates how many strings are used to construct a 
string vector. It is obvious that for (5,6,2) 

configuration string vector, 1e  of dimensionality 100, 
it represents as 100 pairs of variables 1X and 2X . As 

matter of fact, a string vector ( )1
ij N l

ee
×

=  is a matrix 

of elements 5ije ∈ Θ with size .N l×  Figure 1 

intuitively a string vector of( )
100 12ije

×
: 

   

1
1,1 1,6 1,7 1,121

1
2,1 2,6 2,7 2,121 2

1
100,1 100,6 11,7 100,12100

e e e ee

e e e ee
e

e e e ee

   
   
   = =
   
   

     

L L

L L

M O M M O MM

L L

 (3) 

 
 
 
 
 
 
 
 
 
 

4.2. λ operator and 1λ− operator 
 

 
 

Figure 1. Cyclic behavior of operator[ ]ieλ  (Left) 

and operator [ ]1
ieλ −  (Right) 

 
Definition 4.1. λ operator for (5,u,n) configuration 
string element is defined by 

[ ] { }
{ }

1  0,1,2,3  

0            4     
i i

i
i

e if e
e

if e
λ

 + ∈=  ∈
 (4) 

where ie is an element in a string e . 

Definition 4.2. 1λ −  operator for (5,u,n) configuration 
string element is defined by 

[ ] { }
{ }

1 1  1,2,3,4  

4            0     
i i

i
i

e if e
e

if e
λ −  − ∈=  ∈

 (5) 

where ie  is an element in a string e . 
 
4.3. Cyclic behavior of a vector string 
 

Definition 4.3. Let 1 2 le e e e= L  be a (5,u,n) 
configuration string, the λ operation on string e is 

   [ ] [ ] [ ] [ ]1 2 .le e eeλ λ λ λL�  (6) 

Theorem 4.4. Let 1 2 .le e e e= L be a ( )5, , /u l u  

configuration string of length l nu= , where u is the 
length of segmental string. Then  

   ( ) [ ] ( )( ) [ ]4mod ,nn e eλ λ=  (7) 

where  

   

( ) [ ] [ ]
( ) [ ]

repeat  times

0

,

.

n

n

e e

e e

λ λ λ λ

λ

    

≡

� L

 (8) 

 (Note that ( )4mod ⋅ is a modulo operator using 4 as 

its quotient.) 
Proof 4.5. According to Definition 4.1, applying λ 
operator to a string e is just applying the operator λ 
to each individual element in string e , ie , without 
any disturbance on the sequential order, i . Also, 

recall that ( ) [ ]n
ieλ  is cyclic as n increases by step size 
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1, e.g., 0ie = , ( ) [ ] ( ) [ ]5 0 0i i ie e eλ λ= = = . Hence, 
( ) [ ] ( )( ) [ ]4mod .nn e eλ λ=  

Corollary 4.6.  Let 1e be a string vector. Then 

   
( ) ( )( )

( )

4mod1 1

1 10

,

.

nn e e

e e

λ λ

λ

   =
   

  ≡
 

 (9) 

Remark 4.7. Define 1 1
(0) ,e e� 1 1 1

(1) (0) ,e e eλ λ   =
   

�  

( )1 1 1
2)

2
( ,e e eλ λ λ    = =     

( )31 1
(3) ,e eλ  =

 
and ( )41 1

(4)e eλ  =
 

. 

We treat the string vectors within one cycle as the 5 

states of1e : { 1
(0)e , 1

(1)e , 1
(2)e , 1

(3)e , 1
(4)e }, see Figure 2. 

Then if we prepare M string vectors, then in terms of  
λ operator, we will immediately expand to 5M string 
vectors. In such a sense, we call it as  λ expansion 
operation on string  vectors. 
 

 
 
 
 
 
 
 

 
 
 
 
 

Figure 2.  A string vector 1e and its cyclic vectors 
 

Example 4.8. Given a string 1
1e  in strings vector1e : 

1 3 4 1 4 0 0 1 2 2 3 0 

The string 1
1e will be expanded by applying λ , the 

cyclic vectors with respect to 11e  are :  String ( )
1
1 0e of  

(0) state in the string  vector ( )
1
0e , 

1 3 4 1 4 0 0 1 2 2 3 0 

String ( )
1
1 1e  of  (1) state in string vector( )

1
1e , 

2 4 0 2 0 1 1 2 3 3 4 1 

String ( )
1
1 2e  of  (2) state in the string vector( )

1
2e , 

3 0 1 3 1 2 2 3 4 4 0 2 

String ( )
1
1 3e  of  (3) state in the string vector( )

1
3e , 

4 1 2 4 2 3 3 4 0 0 1 3 

String ( )
1
1 4e  of  (4) state in the string vector( )

1
4e , 

0 2 3 0 3 4 4 0 1 1 2 4 
All the strings generated will be in the same row 
position in relevant string vectors. 

4.4 . λ  comparison operation 
 

In the candidate solution search procedure, we need 
to compare the objective function ( ), nf x x∈ R  at 

different values of candidatesx  and thus it is 
inevitably to compare strings, at which f will be 
optimal. 
 
 
 
 
 

Figure 3. λ comparison operation of string vector1e  
 
There are two kinds of λ comparison operations, but 
we only engage the first kind of comparison 
operation within a strings vector.  
Definition 4.9. λ comparison operation of the first 
kind means that the value of the element ie follows 
0 1 2 3 4→ → → →  criterion to change. 
Example 4.10. Let 1

1e , 1
2e , 1

100,eLL  are strings in string 

vector 1e . Let ( ) ( ) ( )
1 1 1

1 2 12, , ,n n ne e eLL are elements in any 

string 1,ne  respectively, 1,2, ,100n = L . Then 

For n=1:1:100-2 
For i=1:1:12 
If ( ) ( )

1 1
1n i n ie e +≡  

( ) ( )
1 1

1n i n ie eλ+
 ←    

ELSE IF ( ) ( )
1 1

2n i n ie e +≡  

( ) ( )
1 1

2n i n ie eλ+
 ←    

END 
Definition 4.11.  λ comparison operation of the 
second  kind means that the value of the element 

ie follows 0 4 3 2 1→ → → →  criterion to change. 

Example 4.12. Let, 1
1e , 1

2e , 1
100,eLL  are strings in 

string vector 1e . Let ( ) ( ) ( )
1 1 1

1 2 12, , ,n n ne e eLL are elements 

in any string 1,ne  respectively, 1,2, ,100n = L . Then 

For n=1:1:100-2 
For i=1:1:12 
If ( ) ( )

1 1
1n i n ie e +≡  

( ) ( )
1 1 1

1n i n ie eλ −
+

 ←    

ELSE IF ( ) ( )
1 1

2n i n ie e +≡  

( ) ( )
1 1 1

2n i n ie eλ −
+

 ←    

END 
Furthermore, we state the assumption on the initial 
set of string vectors.  

1
1e

1
3e 1

5e1
2e 1

4e 1
6e

1e

1
(0)e

1
(4)e

1
(1)e

1
(3)e

1
(2)e
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Initialization Assumption: Let the initial string vector 

be ( )( )00
ij

M l
e e

×
= such all the elements in the thi string 

ie  are mutually independent, 1,2, , .i M= L  

Let [ ]min max,
n

D u u≡ be the searching domain for an 

objective function ( )f x  defined in n-dimensional 

Euclidean space n� . It is obvious D determines the 
scope of searching globally. Mathematically, the 
linear system linking the strings e  and the system 
state x  can be expressed by 

   

( )

( )

( )
( )

1 min max min
1

22

2 min max min 2
1

min max min
1 1

5
      

5

5
    

5

5

5

u ju

j u
j

u ju

j u
j u

nu jnu

n j nu
j n u

x u u u e

x u u u e

x u u u e

−

=

−

= +

−

= − +


= + −




= + −





= + −


∑

∑

∑

M

 (10) 

Let the weight matrix be 

1 0

1 0

1 0

5 5
0 0 0 0

5 5

5 5
0 0 0 0

5 5

5 5
0 0 0 0

5 5

u

u u

u

u u
n nu

u

u u

O

−

−

×

−

 
 
 
 
 =
 
 
 
 
  

L L L

L L L

M L M M L M M L M

L L L

 (11) 

and further, let 

   

1 min

2 min
min max min

min

 ;  ; r

n

x u

x u
x u u u u

x u

   
   
   = = = −
   
   

  

M M
 (12) 

and write string 1 2 le e e e= L in column vector form, 
(i.e., 1nu× column vector of element ie ), that is 

   

'
1

'

'
1

'
1 '

2

'
1

'

 

u

u

nu

u

nu

nu

e

e

e

e
e

e

e

+

×

−

 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
 

M

M

M

M

 
(13) 

Then the candidate solution is a linear transformation 
of the (5,u,nu) configured string representation 

   '
min r n nu nux u u O e×= +  (14) 

Definition 4.13. Let ( ) ( ) [ ] { }min ', 0,1,2,3,4q q
rx u u e O qλ= + ∈ , 

then,  

   ( )( ) ( )( ) ( )( ) ( )( ) ( )( ){ }0 1 2 3 4, , , ,
e

f x f x f x f x f x  (15) 

is called the cyclic set of objective function values 
with respect to string ' 1nue × .  
Definition 4.14. ( λ comparison operation on two 
strings) If we compare 2 strings1e and 2e . Assume 

that String 1e (candidate solution)’s fitness value is 

better than string2e ’s, and then we managed some 

change to2e . Let L be the length of strings 1e , 2e . 

Let 1ie and 2ie be one of the element of 1e and 

2e respectively, and ( )1g ⋅ and ( )2g ⋅ be 2 different kind 

of λ  comparison operation functions.  

   ( ) [ ]2 1 2
2

2 1 2

,   

,       
i i i

i
i i i

e if e e
g e

e if e e

λ =
=  ≠

 (16) 

   ( ) [ ]1
2 1 2

2 2

2 1 2

,   

,       
i i i

i

i i i

e if e e
g e

e if e e

λ − ==  ≠
 (17) 

Becauseλ comparison operation have 2 different 
kind of functions, and each function apply on only 
one single string vectore, so we may only describes 

( )g ⋅ ‘s applications as a sample for other similar 

function. 
In the definition 4.14, we only describe one kind 
λ comparison function ( )g ⋅ . The other one function 

is similar to ( )g ⋅ operation in string vector e. 

Definition 4.15. Given a string vectorvu Ne × . A 

string ( )1 2 1 2 1 1u u u vuv ue e e e e e e e+ − += L L L L  represent a 

candidate solution has n components. By ranking of 
the fitness values from best to worst, we have a 

sorted string vector'e , where nie denotes any element 

in 'e at thn  row, thl column. Thenλ  Comparison 
operation in strings vector defined as: 
If 3n ≥  

   ( )

[ ] ( ) ( )

[ ] ( ) ( )
( ) [ ] ( ) ( )

( ) ( )

1 2

1 2

2
1 2

1 2

,    

,    

,    

,    

nl nl n l n l

nl nl n l n l

nl

nl nl n l n l

nl nl n l n l

e if e e e

e if e e e
g e

e if e e e

e if e e e

λ

λ

λ

− −

− −

− −

− −

 = ≠


≠ == 
= =

 ≠ ≠

 (18) 

where 
[ ]( ) ( ) ( )( ) ( ) ( )( )1 2 1 2

0.16 0.16 0.32;

nl nl nln l n l n l n lp e p e e e p e e eλ − − − −= = ≠ + ≠ =

= + =

 (19) 
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( ) [ ]( ) ( )2 0.04, 0.64ni nip e p eλ = =  

If 2n =  

   ( ) [ ]
( )

( 1)

1

,    e

,    e
nl nl n l

nl
nl nl n l

e if e
g e

e if e

λ −

−

 ==  ≠
 (20) 

where 

   [ ]( ) ( )0.2 and 0.8nl nlp e p eλ = =  (21) 

If n = 1 

   ( )nl nlg e e=  (22) 

Note that at each looping timet , aλ comparison 
operation on whole string vector e will result in a 
new conditional random variable. If denote it 

as ,te 00,2, ,t n= L , then { }0, 0,2, ,te t n= L  is a 

stochastic process and furthermore it is a Markov 
Markov (decision) process due to the independent 
Initialization Assumption. Because the decision for 
choosing actions (λ  comparison operation) does not 
only depend on the present state but also concerning 
prior states, so the process is not a simple Markov 
decision process, but more complicated.  
 
4.5. λ  expansion operation 
 

Definition 4.16. Given a string '
1nue ×  in column vector 

form, then the set of strings after an expansion 

( ) ( ) ( ) ( ) ( ){ }' ' ' ' ' '0 1 2 3 4expansion , , , ,e e e e e eλ λ λ λ λ λ           
           �  (23) 

is called theλ expansion set.  
Now we would like to examine the string state 
change in λ expansion set after aλ  comparison 
operation executed in string vector. 
If 3n ≥  

( )

( ) [ ] [ ] ( ) ( )
( ) [ ] [ ] ( ) ( )

( ) [ ] ( ) [ ] ( ) ( )
( ) [ ] ( ) ( )

1 2

1 2expansion

2
1 2

1 2

,    

,    

,    

,    

k
n nl nl n l n l

k
n nl nl n l n l

nl k
n nl nl n l n l

k
n nl n l n l

e e if e e e

e e if e e e
g e

e e if e e e

e if e e e

λ λ

λ λ
λ

λ λ

λ

− −

− −

− −

− −

 = ≠

 ≠ == 

= =


≠ ≠

 (24) 

If 2n =  

( )( )
( ) [ ] [ ]

( ) [ ] ( )

( 1)expansion

1

,    e

,    e

k
nl nl nl n l

nl k
nl nl n l

e e if e
g e

e if e

λ λ
λ

λ
−

−

 == 
≠

 (25) 

If n = 1 

   ( )( ) ( ) [ ]expansion k
nl ng e eλ λ=  (26) 

where 0,1,2,3,4; 1,2, ; 1,2,k n N l L= = =L L . L is the 
length of string, N represent size of strings in string 
vector. 

Both λ expansion and λ comparison operations in 
string vector are taken after ranking the string vector 
according to the value of objective function ( )f x . 

After ranking, the fitness values corresponding to 
strings 1 2, ,n n ne e e− −  are supposed to be very close to 
those corresponding to whole vector strings.  
Therefore, what we need to find out are whether or 
not some same elements exist in each of 1 2, ,n n ne e e− −  
(three strings) to ensure those repeated elements in 
the strings are the reason why the fitness values are 
similar. According to equation (20), we can see the 
repeated elements nle already separated from the 
unrepeated elements, by taken an extra 

[ ]λ ⋅ operation, the twice time repeated elements also 

separated from the unrepeated elements by taken two 
times [ ]λ ⋅ operation. Then one time and two times 

repeated elements rejoin with other elements 
in ( ) [ ]k

neλ , k=0, 1,2,3,4 respectively.  

Consequently, we can select only one string from 

rejoined 5 states( )k new
neλ  

  , k=0,1,2,3,4 of strings. 

After carrying on the above process recursively, the 
sequence of the fitness values of objective function 
will be convergent. The recursive procedure is shown 
in Figure 4, which demonstrates a dynamic Bayesian 
network pattern.  
 

 
 

Figure 4. A dynamic Bayesian networks (DBNs) 
representation of λ algorithm 
 
Figure 5 gives the flow chart to express the 
operations process ofλ algorithm. 
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Figure 5. Flow chart to express the operations 
process ofλ  algorithm 
 
Bayesian networks (BNs) is a probabilistic graphical 
model (GM), where an individual node in the GM 
represents a random variable, while those edges 
between the nodes represent the conditional 
probabilities among the corresponding random 
variables. A GM enjoys certain degree of  Markov 
property. See [2], [3], [8]. 

A dynamic Bayesian networks (DBNs) is a general 
state-space model as an extension of Kalman Filter 
Models and Hidden Markov model. General 
speaking, a state-space model first specifies a prior 

( )0p X  and a state-transition function, ( )1|t tp X X − , 

and an observation function, ( )1|t tp Y X −  

It is critical that the observations are conditional 
first-order Markov ( ) ( )1|  ,    |  t t t t tp Y X Y p Y X− = . The 

Markovian character of DBNs essentially guarantees 
the existence of the stationary probability of the 
steady state. 
It is fundamental to recognize that λ algorithm 
engages a mechanism of the DBNs. Such a 
recognition drove out the long-time bothering issue, 
why a λ algorithm converges almost sure and the 
global optimization can be achieved. 
 
5. Testing examples 
 

As a conventional step to bring in a new global 
optimization algorithm, we utilize the new algorithm 
to search the optima of four 30-dimensional testing 
functions and three 10-dimensional test functions. In 
addition, we use two extreme challengeable testing 
functions. The string configuration for the lambda 
algorithm engaged for the first three testing is 
(5,4,120), but for Levy function is (5,3,90). 
Table 4 lists conventional test indices for the four 30-
dimensional test functions. 
 
Table 4. Algorithm efficiency indices 
 

Search 
indices 

Ackley Dixon & 
Price 

Griewank Levy  

Domain  [ ]30
15,30−  [ ]30

10,10−  [ ]30
600,600−  [ ]30

10,10−  

Time 
(sec.) 

180.32 167.12 74.41 104.94 

Loop  144 289 125 187 
Probab. 
control 

0.9 0.8 0.8 0.8 

 
As to the function specifications and searched optima 
for the four 30-dimensional test functions, we list 
them as following: 
 
1. Ackley function: Number of variables: n = 30. The 
minimum is 0 when 0,ix =  1, ,30i = L . Ackley 

function in general takes the form: 

( ) ( )2
1

1 1

1 1
, , 20exp 0.2 exp cos 2 20

n n

n i i
i i

f x x x x e
n n

π
= =

   = − − − + +       
∑ ∑L  (27) 

The searched minimum =7.9936E-015; 
 
Optimal ox =1.0E-014 × (0.0391  0.0857  0.1666  
0.1666  0.1767  -0.1808  0.1631  0.1768  0.1790     
-0.5370  0.2282  0.4305  -0.6646  0.1693  0.1778  
-0.1060  0.0743  0.1775  0.0127  0.1605  -0.0093  

Back to start loop 

Compare new 1e  
with best fitnesss 

Compare new 
2e  with best 

Compare new 3e  
with worst 

New 1e  New 2e  New 3e  

Apply λ  
comparison 
operation 

Check whether firste  reaches the stationary probability you 
setup? If yes, shrink the searching domain, reform the selecting 

strings in firste , denote as first
newe . Flip vertical of first

newe  as a new 

vector last
newe . first

newe , last
newe  instead of firste , laste  respectively. 

Selecting first ranked 1 

strings vector firste  

Selecting last ranked 1 

strings vector laste  

Does the best fitness 
satisfy the stopping 
condition? 

Out of the 
loop, finished 
optimization 

Yes 

Combine 15 vectors+ 4 stings as one; rank the strings 
according to their fitness values from minimum to 

maximum, denote the minimum fitness value as best fitness, 

1e expands 

to
( )
1
0e ,

( )
1
1e ,

( )
1
2e ,

( )
1
3e ,

( )
1
4e  

Apply λ  
expansion 

on 1e  

Apply λ  
expansion 

on 2e  

Apply λ  
expansion 

on 3e  

Compare last 
time Best fitness 

with this time 
one. If elements 
are not same, 

applyλ  
expansion on 

them, if they are 
same, remain the 
elements, then 
we have 4 extra 
strings from best 

2e expand
s 

to
( )
2
0e ,

( )
2
1e ,

( )
2
2e ,

( )
2
3e ,

2e  

3e expands 

to
( )
3
0e ,

( )
3
1e ,

( )
3
2e ,

( )
3
3e ,

( )
3
4e  

Randomly Initial 3 strings vectors1e , 2e , 3e  

Start 

Apply λ  
comparison 
operation 

Apply λ  
comparison 
operation 
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0.1357  0.0338  0.1007  0.0285  -0.3655  -0.0357   
-0.3171 -0.1896  0.0224) 

 
2. Dixon and Price Function: Number of variables: n 
= 30, the minimum is 0 when 0,ix =  1, ,30i = L . 

The function is defined by 

( ) ( ) ( )
2

2 2
1 1 1

2

, , 1 2
n

n i i
i

f x x x i x x−
=

= − + −∑L  (28) 

Searched minimum =0.7463, optimal solution is 
 

ox  =(0.2399  0.0866  -0.0012  -0.0004  -0.0050  
-0.0004  -0.0026  -0.0046 -0.0116  -0.0029  0.0030  
0.0023  0.0055  -0.0011  -0.0014  0.0005  0.0000  
0.0017  0.0225  -0.0161  0.0004   -0.0011  -0.0002  
0.0289  0.0161  -0.0001  -0.0009  -0.0005  -0.0023  
0.0003) 

 
3. Griewank Function: Number of variables: n =30. 
The minimum is 0 when 0ix = . The n -dimensional 

Griewank function takes the form: 

( ) ( )
2

1
1 1

, , cos 1
4000

nn
i

n i
i i

x
f x x x i

= =

= − +∑ ∏L  (29) 

Searched minimum =0 
Optimal ox =1.0E-007 *(0.0007  -0.0075  -0.0229  
0.0295  0.0282  0.0106  -0.0046  0.0347  -0.0426  
-0.0098  -0.0229  0.0636  -0.0007  -0.0098  0.0374  
-0.0033  0.0111  0.0754  -0.0033  0.0164  0.0004  
0.1540  0.2458  -0.0885  0.0360  0.1475  0.0020     
-0.3008  0.0492  0.0557) 

 
4. Levy function: Number of variables: n =30. The 
minimum is 0 when 1ix =  

( ) ( ) ( )( )
( ) ( )( )

2
2 2

1
0

22 2
0 1 1

, , 1 1 10sin 1

         sin ( ) 1 1 sin 2

n

n i i
i

n n

f x x y y

y y x

π

π π

−

=

− −

= − + +

+ + + − +

∑L  (30) 

where  

   
1

1 , 1, ,
4

i
i

x
y i n

−
= + = L  (31) 

Searched minimum  =0.5840, optimal solution is 
 
 ox  = (1.0166  0.9980  0.9982  0.9919  0.9978  
0.2377  0.3999  0.9944  1.0103  0.9965  0.9992  
1.0105  0.9773  1.0031  0.3994  1.0407  1.0140      
-0.0792  1.0009  0.9985  0.9957  1.0060  1.0487  
0.9937  0.3999  1.0037  0.9966  0.3933  0.3999  
1.0108) 

Table 5 summarizes three 10-dimensional test 
functions. The search scheme utilizes (6,4,40) string 
configuration. 
 
Table 5. Algorithm efficiency indices 
 

Search indices Michalewics Rastrigin Rosenbrock 
Domain  [ ]10

0,π  [ ]10
5,5−  [ ]10

5,5−  

Time (sec.) 90.66 37.82 24.47 
Loop  200 174 100 

Probability control 0.8 0.4 0.98 

 
5. Michalewics Function: Number of Variables: n = 
10. The theoretical minimum value is -9.66015 

( ) ( ) ( )( )20
2

1
1

, , sin sin /
n

n i i
i

f x x x ix π
=

= −∑L
 

(32) 

The searched minimum value  = - 9.2562, the 
optimal value is 

ox = (2.1987  1.5692  2.2179  1.9225  0.9947  
1.5733  1.4516  1.7603  1.6588  1.2171) 

 
6. Rastrigin Function: Number of Variables: n =10 
The theoretical minimum value is 0 when 0ix = , 

1, ,10i = L . 

( ) ( )( )2
1

1

, , 10 10cos 2
n

n i i
i

f x x n x xπ
=

= − + −∑L  (33) 

The searched minimum  =0, the optimal solution is 
ox =1.0E-008 × (0.4096  -0.0819  -0.0819  0.2458  

0.2458  -0.2130  0.1147  -0.1802  -0.4096  0.2458) 
 
7. Rosenbrock Function: Number of Variables: n = 
10. The general form of Rosenbrock Function is 

   ( ) ( ) ( )
1 2 22

1 1
1

, , 100 1
n

n i i i
i

f x x x x x
−

+
=

 = − + −  ∑L  (34) 

The theoretical minimum is 0, when 1ix = , 

1, ,10i = L . The searched minimum = 0.000194808, 
the optimal 
 

ox = (0.9998  0.99969  0.99974  0.99933  0.99928 
0.9991  0.998  0.99572  0.99137  0.98285) 

The last two testing functions are extremely 
challengeable.  Table 6 summarizes the two testing 
functions testing results. The lambda algorithm 
searching scheme utilizes (5,4,120) and (5, 4, 400) 
respectively. 
 
Table 6. Algorithm efficiency indices for 30-
dimensional Rosenbrock function and 100-
dimensional sin20 function 
 

Search indices Rosenbrock 20sin   
Domain  [ ]30

2.408,2.408−  [ ]100
10,10−  

Time (sec.) 90.95 291.06 
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Loop  100 100 
Probability control 0.60 0.3 

 
8. Rosenbrock Function: Number of Variables: n =30, 
the minimum is 0 when 1ix = , 1, ,30i = L . The 

string configuration for searching lambda scheme is 
(5,4,120).  
The searched minimum = 2.5183 
 
Optimal ox  =(0.9994  0.9973  0.9994  1.0024  
1.0014  1.0003  1.0035  1.0007  1.0015  1.0007  
1.0004  1.0015  0.9971  0.9966  1.0001  0.9995  
0.9973  0.9997  0.9952  0.9991  0.9927  0.9856  
0.9707  0.9473  0.9014  0.9520  0.9744  0.9714  
0.9491  0.9008) 

9. 20sin function: Number of Variables: n =100. The 
theoretical maximum is n when / 2,ix jπ π= +  

0,1,2,j = L . 

   ( ) ( )20
1

1

, , sin
n

n i
i

f x x x
=

=∑L  (35) 

The searched maximum value = 91.0671, the optimal  
 

ox =(1.4857  -7.8411  -4.6816  -4.7119  -1.5208     
-4.6401  1.5676  7.8522 1.6444  7.8734  -7.8784  
4.7178  -1.5417  -7.8683  1.5590  7.7531  7.8484   
-1.5301  -4.7494  -4.8971  1.5430  -4.7074  -1.3356  
-1.5826 4.7689  2.9632  -1.5465  1.6441  -1.5685  
1.4859  1.5135  1.5899  1.5212  0.1591  -0.9106  
1.5329  -4.7451  4.6183  4.7783  7.8759  1.5594  
1.5520  -4.8942  -1.5857  -1.5533  4.6714  1.5529  
1.6801  1.5276  1.5989  -7.8975  -7.8473  -4.7436   
-1.5183  4.7857  7.8521  4.7119  -1.5925  -1.6175   
-1.6763  4.7724  -4.7648  -4.6491  1.5808  -7.8505  
-7.8527  4.6484  3.7575  4.7969  -1.5098  1.4933  
7.8250  1.7861  -1.4387  -1.5806  7.8622  -1.4867  
-4.6982  -4.3371  1.5879  1.7464  -1.4736  -7.8447  
1.5872  1.5873  -1.5733  -7.9322  4.7021  1.5871  
1.5891  -4.7056  1.6080  4.8077  -1.5593  1.5689  
-4.7446  -1.5889  -1.4475  -4.7321  1.7987) 

In summary, the algorithm testing demonstrates 
satisfactory result in accuracy and efficiency. 
 
6. Likelihood-lambda procedure 
 

Likelihood function and procedure plays important 
role in safety and reliability modelling, see [1], [10], 
and [11]. In this section, we will investigate the 
scheme to utilize the lambda algorithm for searching 
the numerical solution to a likelihood function. 
 
6.1. Log-likelihood function 
 

Let ( ) ( )1 1 2 2| , , , , , , ;N NL f x x xθ ϑ ϑ ϑ θΚ = L with ( );f θ⋅  

representing the joint distribution of data Κ . This is 

then called the likelihood function with respect to 
parameter setθ , θ ∈ Θ . 

Definition 6.1. Let ( ){ }, , 1,2, ,i ix i NϑΚ = = L  be a 

failure-censoring data record, i.e.,    





ϑ
event censored a is 1

failure natural a is 0

i

i
i x

x
=  (36) 

then   

   ( ) ( ) ( )( )∏
= −−

−

−
=Κ

N

i
ii xRxfL ii

1

1 ;;| θθθ ϑϑ  (37) 

where f is the failure density function and R is the 
reliability function. 
Definition 6.2. The function then   

   ( ) ( )( )| ln |l Lθ θΚ = Κ  (38) 

is called the log-likelihood function. 
Lemma 6.3. 0θ is an optimal point for( )|l θ Κ if and 
only if it is an optimal point for ( )|L θ Κ . 
Note that ( )ln ⋅ , whose base is 1e > , is monotone 

increasing. Therefore the patterns in ( )|L θ Κ will be 

well-maintained by  ( )|l θ Κ and the converse is also 

true: then   

   

( ) ( ){ }

( ) ( ){ }

0

0

| max |

| max |

l l

L L

θ θ

θ θ

Κ = Κ

⇔

Κ = Κ

 (39) 

Turning our attention now to wave-like lifetime 
distribution of Type I, (see [7], [8]), it has a form:    

   ( )
2

2
0

sin
1 exp

x s
F x ds

s

αγ
  

= − − +   
  
∫  (40) 

with two-parameter hazard function:    

   
( )

[ )

2

2

sin

0, ,  0,  0

x
h x

x
x

αγ

α γ

= +

∈ +∞ > ≥
 (41) 

Theorem 6.4. ([7], [8]) For the Type I wave-like 
distribution, the log-likelihood function is:    

   
( ) ( )

2

2
1

2

2
1 0

sin
, | 1 ln

sin
              

i

N
i

i
i i

xN

i

x
l

x

s
ds

s

αα γ ϑ γ

αγ

=

=

 
Κ = − + 

 

 
− + 

 

∑

∑∫

 (42) 

The first-order partial derivatives are 
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( ) ( )( )

( )

( ) ( )

2 2
1

1 0

2

2 2
1 1

, | sin 2 1

sin

sin 2
                 

, | 1

sin

i

N
i i i

i i i

xN

i

N N
i i

i
i ii i

l x x

x x

s
ds

s

l x
x

x x

α γ α ϑ
α γ α

α

α γ ϑ
γ γ α

=

=

= =

∂ Κ −
=

∂ +

−

∂ Κ −
= −

∂ +

∑

∑∫

∑ ∑

 (43) 

and the second-order order partial derivatives are 

  

( ) ( )( ) ( )
( )

( )

( )

( ) ( ) ( )
( )

( ) ( )
( )

2 2 22
2

22 2 2
1

1

2 3

22 2
1

2 4

22 2 2
1

2cos 2 sin sin 2, |
1

sin

1
                    sin 2

, | 1 sin 2

sin

, | 1

sin

N
i i i i

i i
i

i i

N

i
i

N
i i i

i
i i

N
i i

i
i i

x x x xl
x

x x

x

l x x

x x

l x

x x

α γ α αα γ
ϑ

α γ α

α
α

α γ ϑ α
α γ γ α

α γ ϑ
γ γ α

=

=

=

=

+ −∂ Κ
= −

∂ +

−

∂ Κ −
= −

∂ ∂ +

∂ Κ −
= −

∂ +

∑

∑

∑

∑

 
(44) 

Theorem 6.5. For the Type II wave-like lifetime 
distribution with 2 parameters, and a hazard function 
of the form  xxxh /)sin()( αγ += , the log-likelihood 
function in the presence of both failures and censored 
data is   

   
( ) ( ) ( )

( )
1

1 1 0

sin
, | 1 ln

sin
               

i

N
i

i
i i

xN N

i
i i

x
l

x

s
x ds

s

α
α γ ϑ γ

α
γ

=

= =

 
Κ = − + 

 

− −

∑

∑ ∑∫

 (45) 

The first-order partial derivatives are 

( ) ( ) ( )
( )

( )

( ) ( ) ( )

1

1

1 1

, | cos
1

sin

1
                 sin

, |
1

sin

N
i i

i
i i i

N

i
i

N N
i

i i
i ii i

l x x

x x

x

l x
x

x x

α γ α
ϑ

α γ α

α
α

α γ
ϑ

γ γ α

=

=

= =

∂ Κ
= −

∂ +

+

∂ Κ
= − −

∂ +

∑

∑

∑ ∑

 (46) 

and the second-order partial derivatives are 

( ) ( ) ( )
( )( )

( ) ( )

( ) ( ) ( )
( )( )

( ) ( )
( )( )

2
2

2 2
1

2
1 1

2 2

2
1

2 2

2 2
1

, | sin 1
1

sin

1 1
                    sin cos

, | 1 cos

sin

, | 1

sin

N
i i

i i
i

i i

N N

i i i
i i

N
i i i

i
i i

N
i i

i
i i

l x x
x

x x

x x x

l x x

x x

l x

x x

α γ γ α
ϑ

α γ α

α α
αα

α γ ϑ α
α γ γ α

α γ ϑ
γ γ α

=

= =

=

=

∂ Κ +
= − −

∂ +

− +

∂ Κ −
= −

∂ ∂ +

∂ Κ −
= −

∂ +

∑

∑ ∑

∑

∑

 
(47) 

Remark 6.6. Theorem 6.4 and 6.5 facilitate classical 
maximum likelihood estimation with derivatives up 
to the second order for the two types of wave-like 
lifetime distributions. Reliability engineers can use 
these two theorems for modeling and analysis in 
traditional Newton-Raphson procedure or use semi-

derivative or non-derivative Likelihood-GA 
procedure if they do not mind the computation time 
consumptions. To reach a better efficiency, we 
intend to switch our attention to  replacing the GA 
part by lambda algorithm. 
 
6.2. An likelihood-lambda algorithm example 
 

The ML-lambda procedure for searching solutions to 
the joint non-linear equation system: 

( )
( )

, | 0

, | 0

l

l

α γ α
α γ γ

∂ Κ ∂ =
∂ Κ ∂ =

 (48) 

because the integral term appears in the wave-like 
log-likelihood function. The searching results for the 
two models are listed in Table 7. 

 
Table 7. The MLE of parameters for wave-likelihood 
lifetime distributions 
 

Type I II 
0.0412 

(0.01310) 
α̂  6.5202 

(0.00169) 
0.0961 

(0.0006961) 
0.0001 

(0.00001) 
γ̂  0.0001 

(0.00001) 
0.0206 

(0.0000085) 
-1719.2372 ( )ˆ ˆ, |l Kα γ  -3293.1074 
-36496.9421 
2.5757e-008 Accuracy 5.5807e-008 
2.1534e-006 
17.0387 sec. Computation 

time 
17.9384 sec. 

74.9782 sec. 
 
In the Table 7, for the parameter estimate columns, 
the top figures are the estimators whereas the figures 
in brackets are estimated standard deviations. 
It is observed that in the case of Type I, the first pair 
gives the local maximum (( )ˆ ˆ, |l Kα γ = -3293.1074), 

the second is a global (( )ˆ ˆ, |l Kα γ = -1719.2372), 

whereas one suspects that the Type II model is a 
better description of the failure/repair process in 
operation here (( )ˆ ˆ, |l Kα γ = -36496.9421). We found 

two optimal solutions for Type II model (blue is the 
first, black is the second). The following three 
figures plot the estimated hazard functions and e-
score plots. 
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Figure 6. The estimated hazard function of Type I 
wave-like lifetime distribution (̂α =6.5202, ̂γ =0.0001) 
and approximated e-score plot 
 

 

 
 

Figure 7. The estimated hazard function of Type I 
wave-like lifetime distribution (̂α =0.0412,̂γ = 0.0001) 
and approximated e-score plot 

 

 

 
 

Figure 8. The estimated hazard function of Type II 
wave-like lifetime distribution (̂α =0.0961, ̂γ =0.0206) 
and approximated e-score plot 
 
Remark 6.7. The e-score plot (Lawless [11]) is based 
on a fact that 

( ) ( )
0

ˆ ˆˆ ; , exp
ix d

i ie h s ds xα γ= −∫ �  (49) 

and 

 ( )
1

1
ˆE

1

i

i
l

e
n l=

  =  − +∑  (50) 

where ( )ˆ
ie is the thi order statistic in calculated e-

scores{ }1 2ˆ ˆ ˆ, , , Ne e eL . E-score plot plots (( )ˆ
ie ,

( )ˆE ie 
 

), 

1,2, ,i N= L . If the plot demonstrates a straight-line 
then the good-fitness of the maximum likelihood is 
good enough. From the three e-score plots, we see 
similar patterns, but Type I model global result in 
Figure 7 ( α̂ =0.0412,̂γ = 0.0001) convinces us more. 
 
7. Conclusion 
  

In this paper, we introduce the new lambda algorithm 
first, and then investigate the underlying operating 
mechanism of the lambda algorithm. Furthermore, 
we explore the merging the lambda algorithm with 
maximum likelihood procedure. We have a detailed 
illustrative application. In the future, we will strive to 
explore more safety and reliability applications.  
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