
SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 59

1. Introduction

Safety and reliability optimization problems are a
fundamental components intrinsically in the sense
that the statistical theory underlying them is built up
by a pile of relevant mathematical optimal theories
and methodologies. Particularly, in safety and
reliability modelling practices the maximum
likelihood estimation plays an important role.
Therefore, it is necessary to improve the efficiency in
searching the optimal solution of a likelihood
function.
Different searching schemes have different
efficiency. The standard derivative-orient scheme,
the Newton-Raphson procedure is the commonly
engaged, see [1], [10], [11]. However, more and
more searching schemes are utilizing non derivative-
orient schemes, for example, merging likelihood and
genetic algorithm to avoid derivative computations.
The lambda algorithm is created by imitating an
ancient human body system, see [4], [6], [7]. In its
searching scheme, except the necessary mathematical
computations for evaluating the objective function
and the creation of the initial “searching population”
randomly, the algorithm only involves if-else logical

operation and sort procedure. In contrast to existing
global optimization algorithms, particularly GA, the
lambda algorithm engages the simplest mathematics
but reaches the highest searching efficiency.
The remaining structure of the paper is stated as
following: Section two serves the introduction of 5-
element string and the presentation of an Euclidean
vector; Section three will features of the lambda
algorithm; Section four will discuss the operators
engaged in the lambda algorithm and identify the
Markovian features of the searching scheme; Section
five reserves for testing the new algorithm, Section
six proposes the merging of lambda algorithm and
likelihood searching procedure and a reliability
application and Section Seven conclude this paper.

2. Five-element string and Euclidean vector
presentation

In this section we utilize the Rosenbrock’s function
as an example for introducing the lambda algorithm.
Assume that the two-dimensional Rosenbrock’s

function, () () ()2 22
1 2 2 1 1, 100 1 ,f x x x x x= − + − which is

the objective function under investigation. There are

Cui Yanhong

Guo Renkuan
University of Cape Town, Cape Town, South Africa

Guo Danni
South African National Biodiversity Institute, Cape Town, South Africa

Lambda algorithm and maximum likelihood estimation

Keywords

lambda algorithm, genetic algorithm, reliability, repairable system, likelihood-lambda procedure, reliability

Abstract

In this paper, a new global optimization algorithm by imitating ancient Chinese human body system model,
named as lambda algorithm, is introduced. The lambda algorithm utilizes five-element multi-segment string to
represent the n-dimensional Euclidean point and hence the string based operation rules for expansion,
comparison and sorting candidate strings. The algorithm enjoys the simplest mathematical operations but
generates highest searching speed and accuracy. We furthermore explore to merge the lambda algorithm with
maximum likelihood procedure for creating a non-derivative scheme - likelihood- lambda procedure. A
illustrative example is given.

Cui Yanhong, Guo Renkuan
Lambda algorithm and maximum likelihood estimation

 60

many local optimal solutions, but we are interested in
obtain the global optimal solution of f.
Similar to the genetic algorithm (GA) binary string
representation, whose element set is Θ={0,1}, the λ-
algorithm takes elements from a 5 element-set, which
takes a membership set Θ={0, 1, 2, 3, 4}, to
construct a string candidate solution which
represents the candidate solution, Euclidean vector,
x , in the 2-dimensional Euclidean space2R in term
of a linear transformation.
Definition 2.1. A string in an algorithm, denoted by

1 2 ,le e e e= L is a sequence of l elements from the
membership set Θ. The total number of the elements,
l , composed of the string e is called the length of the
string.
Definition 2.2. In a string algorithm, in order to
represent an n-dimensional Euclidean point

()1 2' , , , nx x x x= L , a string e is typically constituted

by n segmental strings, whose length are u, i.e., the
string 1 2 ne e e e= L with length l nu= , where the

thi segment of the string, or thethi segmental string,

, (1) 1 , (1) 2 ,i i u i i u i i iue e e e− + − += L , is of length u ,

(i=1,2,L ,n).
Definition 2.3. A triple (), ,m u n is called string

configuration, where m = total number of elements in
the membership set Θ, u = the length of segmental
string , (1) 1 , (1) 2 ,i i u i i u i i iue e e e− + − += L , and n = total number

of segmental strings composing of the string

1 2 ne e e e= L . Let { }: ie e= ∈ ΘS denote the string

space generated from m-element membership set mΘ

and () (){ }1 2, , ,
:

in mm u n i j
e e e e= ∈ ΘLS the (), ,m u n

configuration string space on mΘ .
Example 2.4. A string with configuration triple (5,6,2)

1 2e e e= represents a 2-dimensional candidate solution
(1X , 2X) for Rosenbrock’s function with two
segmental strings, 1e and 2e . For example,

1 3 4 1 4 0 0 1 2 2 3 0

The first segmental string,1e , is constituted by the
first 6 elements, for example, 1e = 1 3 4 1 4 0, which
represents the variable 1X , while the second
segmental string,2e , is constituted by the seventh
element to the twelfth element, i.e., the second six
elements in the string, for example, 2e =0 1 2 2 3 0,
which represents the variable 2X . The string length

2 6 12.l = × = The correspondence between each
segment string and X can be also labelled as
following:

21

1 3 4 1 4 0 0 1 2 2 3 0
X X

142 43 14243

Let
1 1

1 min max,D u u ≡ be the searching domain of1X ;
2 2

2 min max,D u u ≡ be the searching domain of2X ;
1 1
min max,u u be the lower bound and upper bound

of 1X ;
2 2
min max,u u be the lower bound and upper bound

of 2X .
Then, equation (1) and (2) specify the relationship
between ()1 2,X X and string

1 2 1 2 6 7 8 12e e e e e e e e e= = L L :

 ()
6

61 1 1
1 min max min 61

5

5

j

jj
X u u u e

−

=
= + − ∑ (1)

 ()
12

122 2 2
2 min max min 127

5

5

j

jj
X u u u e

−

=
= + − ∑ (2)

where , 1,2, ,12je j = L denote the elements taking

numbers 0, 1, 2, 3, 4 in the string.
Definition 2.5. A configuring (), ii j indicates the

thi segmental string and the thj element (position) in

the thi segmental string.
Once we setup values of 1 1

1 min max,D u u ≡

and 2 2
2 min max,D u u ≡ , the fitness value of a objective

function ()f x fitness value is readily to calculate

according to equation (1) and (2).
A natural question will be raised: why does GA not
offer the convergent power as high as the lambda
algorithm does? In traditional binary strings
represented algorithms, the chance of appearance of
0 or 1 element in the strings is 50% to 50% of each.
The element repeated and unrepeated chances are
equal, which let us feel difficult to draw any useful
information from both repeated and unrepeated
events respectively.
In the Table 1, we use configuration triple (2,6,2) to
specify the string. In other words, (2,6,2) represents
membership set Θ={0,1}, segmental string length 6,
and 2 segmental strings.

Table 1. The binary element strings (2,6,2)

1 0 1 1 0 1 0 0 1 1 0 1
1 1 0 1 0 0 0 0 1 0 1 0

Similarly, in Table 2, (5,6,2) represents membership
set Θ={0,1,2,3,4}, unit string length 6, and 2-
segmental string.

SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 61

Table 2. The five-element (5,6,2) strings

2 3 4 4 2 1 3 3 2 1 0 0
2 1 1 3 1 0 4 3 2 3 0 1
2 2 4 3 0 1 2 4 3 2 1 1
1 2 4 3 0 1 2 4 3 2 1 1
0 1 2 3 4 1 0 2 2 3 3 0

Assume that a column of strings is ranked according
to their fitness values (from minimum to maximum),
if we select top 5 ranked strings as a sample, see
Table 2, the first knowledge we learn from it is that
their fitness values are less than any other strings. On
the other hand, in the lambda algorithm, the repeated
chance of each element is 20%, see Table 2. That
means that in the sample, if 3 out of 5 are repeated
with a particular element at any position, then the
repeated chance of the element in this position is
60%, which is much higher than 20% (in binary
string cases). This phenomenon is the second
knowledge we would like to know. Even we might
interpret this phenomenon as a consequence of
randomization. However, under a perfect circulation,
we might consider the extra 40% chance would be
induced by their smaller fitness values. This
phenomenon shows us the convergent tendency
toward the optimal solution is higher than that of GA.
To highlight the global convergence tendency role in
element numeration in the lambda algorithm, we
divide element events into 3 categories: repeated one
time element events, repeated two times element
events and unrepeated element events. The lambda
algorithm draws useful information from all three
categories, to construct an intrinsic scheme towards
global optimization.

3. Features of string representation

We should be aware that in searching and selecting
candidate solution the λ-algorithm utilizes the
information contained in the value of an element, the
element position in the segmental string, and the
sequential order of the segmental string. Note that
the transformation matrix plays a vital role for
linking a string of length nu , 1 2 ne e e e= L , where the

thi piece of the string, or thethi segmental string, with
length u , , (1) 1 , (1) 2 ,i i u i i u i i iue e e e− + − += L , (i=1,2,L ,n), and

an n-dimensional Euclidean point ()1 2' , , , .nx x x x= L

In other words, the global search strength mechanism
lies on that the weighting system, i.e.,

0,0,0,0,0,0,
5

5
,

5

5
,

5

5
,

5

5
,

5

5
,

5

5
6

0

6

1

6

2

6

3

6

4

6

5

, assigned to the

6 members in the first segmental string and

6

0

6

1

6

2

6

3

6

4

6

5

5

5
,

5

5
,

5

5
,

5

5
,

5

5
,

5

5
,0,0,0,0,0,0 , the weighting

system assigned to the 6 members in the second

segmental string create the possibility that change in
the element ij (position) of the t hi segmental string
will have different impacts because different position
has different weight. A ()5,6,2 string, denoted by

71 22 8 16 ,e e ee e eLL , the blue-color elements are the

first segmental string, representing 1x , the red-color
elements are the second segmental string,
representing 2x . Logically, changes in elements 1e

and 7e will result in large changes in 1x and 2x
respectively, because the highest weight 0.2 is
assigned to them, while changes in 6e and 12e will

result in the smallest changes in 1x and 2x
respectively, because the lowest weight 0.000064 is
assigned to them. Therefore, a well-constructed
string element shift scheme will have a balanced
global searching capability as well as local fine-tune
capacity.
Example 3.1. Define 10

min 10u = - , 10
max 10u = + ,

then 10
max min 2 10ru u u= - = ´ . String 1 in Table 3:

1 2 4 3 0 1 2 4 3 2 11 is the base for observing the
impacts from string element changes. String 2
changes the first element of the first segmental string
in String 1 by adding 1 and the first element of the
second segmental string by adding 1, which is the
smallest shift in size at highest weight 0.2. The
change in 1x and 2x is quite large with distance
5656854249.5. However, String 3 changes the sixth
element of the first segmental string by adding 3 and
the sixth element of the second segmental string by
adding 3, which is the largest shift in size at highest
weight 0.000064. The change in 1x and 2x is much
small with distance 202276452.4. Table 3 lists the
changing effects for comparisons.

Table 3. The Impacts of Weights in Global Searching
and Local Tune-up

String
1x 2x x∆

1 2 4 3 0 1 2

4 3 2 1 1

-3662720000 1751680000

2 2 4 3 0 1 3

4 3 2 1 1 337280000 5751680000 5656854249.5
1 2 4 3 0 4 2

4 3 2 1 4 -3460480000 1755520000 202276452.4

It is critical to emphasize here that the global feature
of a string algorithm is also materialized by the range
parameter setting, i.e., the setting of ()min max,u u . The

larger max minru u u= - , the better global coverage is
intended.
Examining thethi component of x , ix , which is a real
number, for example, 7.5673ix = , traditional
optimization schemes may be shift 7.5673ix = by a

Cui Yanhong, Guo Renkuan
Lambda algorithm and maximum likelihood estimation

 62

small increment, say, 0.005, it is intuitive that by
changing at digit level of a real, the scheme remains
at a local algorithm nature. Therefore, the globally
and locally simultaneous searching feature of the
string scheme will definitely speed up the global
optimization algorithm. By repeated and unrepeated
(string) elements numerated from high weight
position (i.e. element of a segmental string) to lower
weight position within the strings (the candidate
solution strings), in terms of sort and pack scheme
repeatedly until the final optimized solution is found.
Our computation experiences show that in searching
the final global optimal solution, it is often the case
that the first 3 or 4 positions (high weight elements)
in a string (if the string size is 6) could adequately
secure the main searching path toward the final
optimal solution globally. Nevertheless, the lower
cell elements are able to change for fine-tuning ix in
small increment manner, which allows the searching
scheme to access the final optimal solution with
amazingly high precision.

4. Operators in lambda algorithm

In this section we will systematically explore the
mathematical operators in the lambda algorithm. For
this purpose, it is necessary to introduce more
notations.

4.1. String vector
A string vector, denoted by1e , is a column vector
taking strings as its components. The dimensionality
indicates how many strings are used to construct a
string vector. It is obvious that for (5,6,2)

configuration string vector, 1e of dimensionality 100,
it represents as 100 pairs of variables 1X and 2X . As

matter of fact, a string vector ()1
ij N l

ee
×

= is a matrix

of elements 5ije ∈ Θ with size .N l× Figure 1

intuitively a string vector of()
100 12ije

×
:

1
1,1 1,6 1,7 1,121

1
2,1 2,6 2,7 2,121 2

1
100,1 100,6 11,7 100,12100

e e e ee

e e e ee
e

e e e ee

 = =

L L

L L

M O M M O MM

L L

 (3)

4.2. λ operator and 1λ− operator

Figure 1. Cyclic behavior of operator[]ieλ (Left)

and operator []1
ieλ − (Right)

Definition 4.1. λ operator for (5,u,n) configuration
string element is defined by

[] { }
{ }

1 0,1,2,3

0 4
i i

i
i

e if e
e

if e
λ

 + ∈= ∈
 (4)

where ie is an element in a string e .

Definition 4.2. 1λ − operator for (5,u,n) configuration
string element is defined by

[] { }
{ }

1 1 1,2,3,4

4 0
i i

i
i

e if e
e

if e
λ − − ∈= ∈

 (5)

where ie is an element in a string e .

4.3. Cyclic behavior of a vector string

Definition 4.3. Let 1 2 le e e e= L be a (5,u,n)
configuration string, the λ operation on string e is

 [] [] [] []1 2 .le e eeλ λ λ λL� (6)

Theorem 4.4. Let 1 2 .le e e e= L be a ()5, , /u l u

configuration string of length l nu= , where u is the
length of segmental string. Then

 () [] ()() []4mod ,nn e eλ λ= (7)

where

() [] []
() []

repeat times

0

,

.

n

n

e e

e e

λ λ λ λ

λ

≡

� L

 (8)

 (Note that ()4mod ⋅ is a modulo operator using 4 as

its quotient.)
Proof 4.5. According to Definition 4.1, applying λ
operator to a string e is just applying the operator λ
to each individual element in string e , ie , without
any disturbance on the sequential order, i . Also,

recall that () []n
ieλ is cyclic as n increases by step size

SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 63

1, e.g., 0ie = , () [] () []5 0 0i i ie e eλ λ= = = . Hence,
() [] ()() []4mod .nn e eλ λ=

Corollary 4.6. Let 1e be a string vector. Then

() ()()

()

4mod1 1

1 10

,

.

nn e e

e e

λ λ

λ

 =

 ≡

 (9)

Remark 4.7. Define 1 1
(0) ,e e� 1 1 1

(1) (0) ,e e eλ λ =

�

()1 1 1
2)

2
(,e e eλ λ λ = =

()31 1
(3) ,e eλ =

and ()41 1

(4)e eλ =

.

We treat the string vectors within one cycle as the 5

states of1e : { 1
(0)e , 1

(1)e , 1
(2)e , 1

(3)e , 1
(4)e }, see Figure 2.

Then if we prepare M string vectors, then in terms of
λ operator, we will immediately expand to 5M string
vectors. In such a sense, we call it as λ expansion
operation on string vectors.

Figure 2. A string vector 1e and its cyclic vectors

Example 4.8. Given a string 1
1e in strings vector1e :

1 3 4 1 4 0 0 1 2 2 3 0

The string 1
1e will be expanded by applying λ , the

cyclic vectors with respect to 11e are : String ()
1
1 0e of

(0) state in the string vector ()
1
0e ,

1 3 4 1 4 0 0 1 2 2 3 0

String ()
1
1 1e of (1) state in string vector()

1
1e ,

2 4 0 2 0 1 1 2 3 3 4 1

String ()
1
1 2e of (2) state in the string vector()

1
2e ,

3 0 1 3 1 2 2 3 4 4 0 2

String ()
1
1 3e of (3) state in the string vector()

1
3e ,

4 1 2 4 2 3 3 4 0 0 1 3

String ()
1
1 4e of (4) state in the string vector()

1
4e ,

0 2 3 0 3 4 4 0 1 1 2 4
All the strings generated will be in the same row
position in relevant string vectors.

4.4 . λ comparison operation

In the candidate solution search procedure, we need
to compare the objective function (), nf x x∈ R at

different values of candidatesx and thus it is
inevitably to compare strings, at which f will be
optimal.

Figure 3. λ comparison operation of string vector1e

There are two kinds of λ comparison operations, but
we only engage the first kind of comparison
operation within a strings vector.
Definition 4.9. λ comparison operation of the first
kind means that the value of the element ie follows
0 1 2 3 4→ → → → criterion to change.
Example 4.10. Let 1

1e , 1
2e , 1

100,eLL are strings in string

vector 1e . Let () () ()
1 1 1

1 2 12, , ,n n ne e eLL are elements in any

string 1,ne respectively, 1,2, ,100n = L . Then

For n=1:1:100-2
For i=1:1:12
If () ()

1 1
1n i n ie e +≡

() ()
1 1

1n i n ie eλ+
 ←

ELSE IF () ()
1 1

2n i n ie e +≡

() ()
1 1

2n i n ie eλ+
 ←

END
Definition 4.11. λ comparison operation of the
second kind means that the value of the element

ie follows 0 4 3 2 1→ → → → criterion to change.

Example 4.12. Let, 1
1e , 1

2e , 1
100,eLL are strings in

string vector 1e . Let () () ()
1 1 1

1 2 12, , ,n n ne e eLL are elements

in any string 1,ne respectively, 1,2, ,100n = L . Then

For n=1:1:100-2
For i=1:1:12
If () ()

1 1
1n i n ie e +≡

() ()
1 1 1

1n i n ie eλ −
+

 ←

ELSE IF () ()
1 1

2n i n ie e +≡

() ()
1 1 1

2n i n ie eλ −
+

 ←

END
Furthermore, we state the assumption on the initial
set of string vectors.

1
1e

1
3e 1

5e1
2e 1

4e 1
6e

1e

1
(0)e

1
(4)e

1
(1)e

1
(3)e

1
(2)e

Cui Yanhong, Guo Renkuan
Lambda algorithm and maximum likelihood estimation

 64

Initialization Assumption: Let the initial string vector

be ()()00
ij

M l
e e

×
= such all the elements in the thi string

ie are mutually independent, 1,2, , .i M= L

Let []min max,
n

D u u≡ be the searching domain for an

objective function ()f x defined in n-dimensional

Euclidean space n� . It is obvious D determines the
scope of searching globally. Mathematically, the
linear system linking the strings e and the system
state x can be expressed by

()

()

()
()

1 min max min
1

22

2 min max min 2
1

min max min
1 1

5

5

5

5

5

5

u ju

j u
j

u ju

j u
j u

nu jnu

n j nu
j n u

x u u u e

x u u u e

x u u u e

−

=

−

= +

−

= − +

= + −

= + −

= + −

∑

∑

∑

M

 (10)

Let the weight matrix be

1 0

1 0

1 0

5 5
0 0 0 0

5 5

5 5
0 0 0 0

5 5

5 5
0 0 0 0

5 5

u

u u

u

u u
n nu

u

u u

O

−

−

×

−

 =

L L L

L L L

M L M M L M M L M

L L L

 (11)

and further, let

1 min

2 min
min max min

min

 ; ; r

n

x u

x u
x u u u u

x u

 = = = −

M M
 (12)

and write string 1 2 le e e e= L in column vector form,
(i.e., 1nu× column vector of element ie), that is

'
1

'

'
1

'
1 '

2

'
1

'

u

u

nu

u

nu

nu

e

e

e

e
e

e

e

+

×

−

 =

M

M

M

M

(13)

Then the candidate solution is a linear transformation
of the (5,u,nu) configured string representation

 '
min r n nu nux u u O e×= + (14)

Definition 4.13. Let () () [] { }min ', 0,1,2,3,4q q
rx u u e O qλ= + ∈ ,

then,

 ()() ()() ()() ()() ()(){ }0 1 2 3 4, , , ,
e

f x f x f x f x f x (15)

is called the cyclic set of objective function values
with respect to string ' 1nue × .
Definition 4.14. (λ comparison operation on two
strings) If we compare 2 strings1e and 2e . Assume

that String 1e (candidate solution)’s fitness value is

better than string2e ’s, and then we managed some

change to2e . Let L be the length of strings 1e , 2e .

Let 1ie and 2ie be one of the element of 1e and

2e respectively, and ()1g ⋅ and ()2g ⋅ be 2 different kind

of λ comparison operation functions.

 () []2 1 2
2

2 1 2

,

,
i i i

i
i i i

e if e e
g e

e if e e

λ =
= ≠

 (16)

 () []1
2 1 2

2 2

2 1 2

,

,
i i i

i

i i i

e if e e
g e

e if e e

λ − == ≠
 (17)

Becauseλ comparison operation have 2 different
kind of functions, and each function apply on only
one single string vectore, so we may only describes

()g ⋅ ‘s applications as a sample for other similar

function.
In the definition 4.14, we only describe one kind
λ comparison function ()g ⋅ . The other one function

is similar to ()g ⋅ operation in string vector e.

Definition 4.15. Given a string vectorvu Ne × . A

string ()1 2 1 2 1 1u u u vuv ue e e e e e e e+ − += L L L L represent a

candidate solution has n components. By ranking of
the fitness values from best to worst, we have a

sorted string vector'e , where nie denotes any element

in 'e at thn row, thl column. Thenλ Comparison
operation in strings vector defined as:
If 3n ≥

 ()

[] () ()

[] () ()
() [] () ()

() ()

1 2

1 2

2
1 2

1 2

,

,

,

,

nl nl n l n l

nl nl n l n l

nl

nl nl n l n l

nl nl n l n l

e if e e e

e if e e e
g e

e if e e e

e if e e e

λ

λ

λ

− −

− −

− −

− −

 = ≠

≠ ==
= =

 ≠ ≠

 (18)

where
[]() () ()() () ()()1 2 1 2

0.16 0.16 0.32;

nl nl nln l n l n l n lp e p e e e p e e eλ − − − −= = ≠ + ≠ =

= + =

 (19)

SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 65

() []() ()2 0.04, 0.64ni nip e p eλ = =

If 2n =

 () []
()

(1)

1

, e

, e
nl nl n l

nl
nl nl n l

e if e
g e

e if e

λ −

−

 == ≠
 (20)

where

 []() ()0.2 and 0.8nl nlp e p eλ = = (21)

If n = 1

 ()nl nlg e e= (22)

Note that at each looping timet , aλ comparison
operation on whole string vector e will result in a
new conditional random variable. If denote it

as ,te 00,2, ,t n= L , then { }0, 0,2, ,te t n= L is a

stochastic process and furthermore it is a Markov
Markov (decision) process due to the independent
Initialization Assumption. Because the decision for
choosing actions (λ comparison operation) does not
only depend on the present state but also concerning
prior states, so the process is not a simple Markov
decision process, but more complicated.

4.5. λ expansion operation

Definition 4.16. Given a string '
1nue × in column vector

form, then the set of strings after an expansion

() () () () (){ }' ' ' ' ' '0 1 2 3 4expansion , , , ,e e e e e eλ λ λ λ λ λ
 � (23)

is called theλ expansion set.
Now we would like to examine the string state
change in λ expansion set after aλ comparison
operation executed in string vector.
If 3n ≥

()

() [] [] () ()
() [] [] () ()

() [] () [] () ()
() [] () ()

1 2

1 2expansion

2
1 2

1 2

,

,

,

,

k
n nl nl n l n l

k
n nl nl n l n l

nl k
n nl nl n l n l

k
n nl n l n l

e e if e e e

e e if e e e
g e

e e if e e e

e if e e e

λ λ

λ λ
λ

λ λ

λ

− −

− −

− −

− −

 = ≠

 ≠ ==

= =

≠ ≠

 (24)

If 2n =

()()
() [] []

() [] ()

(1)expansion

1

, e

, e

k
nl nl nl n l

nl k
nl nl n l

e e if e
g e

e if e

λ λ
λ

λ
−

−

 ==
≠

 (25)

If n = 1

 ()() () []expansion k
nl ng e eλ λ= (26)

where 0,1,2,3,4; 1,2, ; 1,2,k n N l L= = =L L . L is the
length of string, N represent size of strings in string
vector.

Both λ expansion and λ comparison operations in
string vector are taken after ranking the string vector
according to the value of objective function ()f x .

After ranking, the fitness values corresponding to
strings 1 2, ,n n ne e e− − are supposed to be very close to
those corresponding to whole vector strings.
Therefore, what we need to find out are whether or
not some same elements exist in each of 1 2, ,n n ne e e− −
(three strings) to ensure those repeated elements in
the strings are the reason why the fitness values are
similar. According to equation (20), we can see the
repeated elements nle already separated from the
unrepeated elements, by taken an extra

[]λ ⋅ operation, the twice time repeated elements also

separated from the unrepeated elements by taken two
times []λ ⋅ operation. Then one time and two times

repeated elements rejoin with other elements
in () []k

neλ , k=0, 1,2,3,4 respectively.

Consequently, we can select only one string from

rejoined 5 states()k new
neλ

 , k=0,1,2,3,4 of strings.

After carrying on the above process recursively, the
sequence of the fitness values of objective function
will be convergent. The recursive procedure is shown
in Figure 4, which demonstrates a dynamic Bayesian
network pattern.

Figure 4. A dynamic Bayesian networks (DBNs)
representation of λ algorithm

Figure 5 gives the flow chart to express the
operations process ofλ algorithm.

Cui Yanhong, Guo Renkuan
Lambda algorithm and maximum likelihood estimation

 66

Figure 5. Flow chart to express the operations
process ofλ algorithm

Bayesian networks (BNs) is a probabilistic graphical
model (GM), where an individual node in the GM
represents a random variable, while those edges
between the nodes represent the conditional
probabilities among the corresponding random
variables. A GM enjoys certain degree of Markov
property. See [2], [3], [8].

A dynamic Bayesian networks (DBNs) is a general
state-space model as an extension of Kalman Filter
Models and Hidden Markov model. General
speaking, a state-space model first specifies a prior

()0p X and a state-transition function, ()1|t tp X X − ,

and an observation function, ()1|t tp Y X −

It is critical that the observations are conditional
first-order Markov () ()1| , | t t t t tp Y X Y p Y X− = . The

Markovian character of DBNs essentially guarantees
the existence of the stationary probability of the
steady state.
It is fundamental to recognize that λ algorithm
engages a mechanism of the DBNs. Such a
recognition drove out the long-time bothering issue,
why a λ algorithm converges almost sure and the
global optimization can be achieved.

5. Testing examples

As a conventional step to bring in a new global
optimization algorithm, we utilize the new algorithm
to search the optima of four 30-dimensional testing
functions and three 10-dimensional test functions. In
addition, we use two extreme challengeable testing
functions. The string configuration for the lambda
algorithm engaged for the first three testing is
(5,4,120), but for Levy function is (5,3,90).
Table 4 lists conventional test indices for the four 30-
dimensional test functions.

Table 4. Algorithm efficiency indices

Search
indices

Ackley Dixon &
Price

Griewank Levy

Domain []30
15,30− []30

10,10− []30
600,600− []30

10,10−

Time
(sec.)

180.32 167.12 74.41 104.94

Loop 144 289 125 187
Probab.
control

0.9 0.8 0.8 0.8

As to the function specifications and searched optima
for the four 30-dimensional test functions, we list
them as following:

1. Ackley function: Number of variables: n = 30. The
minimum is 0 when 0,ix = 1, ,30i = L . Ackley

function in general takes the form:

() ()2
1

1 1

1 1
, , 20exp 0.2 exp cos 2 20

n n

n i i
i i

f x x x x e
n n

π
= =

 = − − − + +
∑ ∑L (27)

The searched minimum =7.9936E-015;

Optimal ox =1.0E-014 × (0.0391 0.0857 0.1666
0.1666 0.1767 -0.1808 0.1631 0.1768 0.1790
-0.5370 0.2282 0.4305 -0.6646 0.1693 0.1778
-0.1060 0.0743 0.1775 0.0127 0.1605 -0.0093

Back to start loop

Compare new 1e
with best fitnesss

Compare new
2e with best

Compare new 3e
with worst

New 1e New 2e New 3e

Apply λ
comparison
operation

Check whether firste reaches the stationary probability you
setup? If yes, shrink the searching domain, reform the selecting

strings in firste , denote as first
newe . Flip vertical of first

newe as a new

vector last
newe . first

newe , last
newe instead of firste , laste respectively.

Selecting first ranked 1

strings vector firste

Selecting last ranked 1

strings vector laste

Does the best fitness
satisfy the stopping
condition?

Out of the
loop, finished
optimization

Yes

Combine 15 vectors+ 4 stings as one; rank the strings
according to their fitness values from minimum to

maximum, denote the minimum fitness value as best fitness,

1e expands

to
()
1
0e ,

()
1
1e ,

()
1
2e ,

()
1
3e ,

()
1
4e

Apply λ
expansion

on 1e

Apply λ
expansion

on 2e

Apply λ
expansion

on 3e

Compare last
time Best fitness

with this time
one. If elements
are not same,

applyλ
expansion on

them, if they are
same, remain the
elements, then
we have 4 extra
strings from best

2e expand
s

to
()
2
0e ,

()
2
1e ,

()
2
2e ,

()
2
3e ,

2e

3e expands

to
()
3
0e ,

()
3
1e ,

()
3
2e ,

()
3
3e ,

()
3
4e

Randomly Initial 3 strings vectors1e , 2e , 3e

Start

Apply λ
comparison
operation

Apply λ
comparison
operation

SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 67

0.1357 0.0338 0.1007 0.0285 -0.3655 -0.0357
-0.3171 -0.1896 0.0224)

2. Dixon and Price Function: Number of variables: n
= 30, the minimum is 0 when 0,ix = 1, ,30i = L .

The function is defined by

() () ()
2

2 2
1 1 1

2

, , 1 2
n

n i i
i

f x x x i x x−
=

= − + −∑L (28)

Searched minimum =0.7463, optimal solution is

ox =(0.2399 0.0866 -0.0012 -0.0004 -0.0050
-0.0004 -0.0026 -0.0046 -0.0116 -0.0029 0.0030
0.0023 0.0055 -0.0011 -0.0014 0.0005 0.0000
0.0017 0.0225 -0.0161 0.0004 -0.0011 -0.0002
0.0289 0.0161 -0.0001 -0.0009 -0.0005 -0.0023
0.0003)

3. Griewank Function: Number of variables: n =30.
The minimum is 0 when 0ix = . The n -dimensional

Griewank function takes the form:

() ()
2

1
1 1

, , cos 1
4000

nn
i

n i
i i

x
f x x x i

= =

= − +∑ ∏L (29)

Searched minimum =0
Optimal ox =1.0E-007 *(0.0007 -0.0075 -0.0229
0.0295 0.0282 0.0106 -0.0046 0.0347 -0.0426
-0.0098 -0.0229 0.0636 -0.0007 -0.0098 0.0374
-0.0033 0.0111 0.0754 -0.0033 0.0164 0.0004
0.1540 0.2458 -0.0885 0.0360 0.1475 0.0020
-0.3008 0.0492 0.0557)

4. Levy function: Number of variables: n =30. The
minimum is 0 when 1ix =

() () ()()
() ()()

2
2 2

1
0

22 2
0 1 1

, , 1 1 10sin 1

 sin () 1 1 sin 2

n

n i i
i

n n

f x x y y

y y x

π

π π

−

=

− −

= − + +

+ + + − +

∑L (30)

where

1

1 , 1, ,
4

i
i

x
y i n

−
= + = L (31)

Searched minimum =0.5840, optimal solution is

 ox = (1.0166 0.9980 0.9982 0.9919 0.9978
0.2377 0.3999 0.9944 1.0103 0.9965 0.9992
1.0105 0.9773 1.0031 0.3994 1.0407 1.0140
-0.0792 1.0009 0.9985 0.9957 1.0060 1.0487
0.9937 0.3999 1.0037 0.9966 0.3933 0.3999
1.0108)

Table 5 summarizes three 10-dimensional test
functions. The search scheme utilizes (6,4,40) string
configuration.

Table 5. Algorithm efficiency indices

Search indices Michalewics Rastrigin Rosenbrock
Domain []10

0,π []10
5,5− []10

5,5−

Time (sec.) 90.66 37.82 24.47
Loop 200 174 100

Probability control 0.8 0.4 0.98

5. Michalewics Function: Number of Variables: n =
10. The theoretical minimum value is -9.66015

() () ()()20
2

1
1

, , sin sin /
n

n i i
i

f x x x ix π
=

= −∑L

(32)

The searched minimum value = - 9.2562, the
optimal value is

ox = (2.1987 1.5692 2.2179 1.9225 0.9947
1.5733 1.4516 1.7603 1.6588 1.2171)

6. Rastrigin Function: Number of Variables: n =10
The theoretical minimum value is 0 when 0ix = ,

1, ,10i = L .

() ()()2
1

1

, , 10 10cos 2
n

n i i
i

f x x n x xπ
=

= − + −∑L (33)

The searched minimum =0, the optimal solution is
ox =1.0E-008 × (0.4096 -0.0819 -0.0819 0.2458

0.2458 -0.2130 0.1147 -0.1802 -0.4096 0.2458)

7. Rosenbrock Function: Number of Variables: n =
10. The general form of Rosenbrock Function is

 () () ()
1 2 22

1 1
1

, , 100 1
n

n i i i
i

f x x x x x
−

+
=

 = − + − ∑L (34)

The theoretical minimum is 0, when 1ix = ,

1, ,10i = L . The searched minimum = 0.000194808,
the optimal

ox = (0.9998 0.99969 0.99974 0.99933 0.99928
0.9991 0.998 0.99572 0.99137 0.98285)

The last two testing functions are extremely
challengeable. Table 6 summarizes the two testing
functions testing results. The lambda algorithm
searching scheme utilizes (5,4,120) and (5, 4, 400)
respectively.

Table 6. Algorithm efficiency indices for 30-
dimensional Rosenbrock function and 100-
dimensional sin20 function

Search indices Rosenbrock 20sin
Domain []30

2.408,2.408− []100
10,10−

Time (sec.) 90.95 291.06

Cui Yanhong, Guo Renkuan
Lambda algorithm and maximum likelihood estimation

 68

Loop 100 100
Probability control 0.60 0.3

8. Rosenbrock Function: Number of Variables: n =30,
the minimum is 0 when 1ix = , 1, ,30i = L . The

string configuration for searching lambda scheme is
(5,4,120).
The searched minimum = 2.5183

Optimal ox =(0.9994 0.9973 0.9994 1.0024
1.0014 1.0003 1.0035 1.0007 1.0015 1.0007
1.0004 1.0015 0.9971 0.9966 1.0001 0.9995
0.9973 0.9997 0.9952 0.9991 0.9927 0.9856
0.9707 0.9473 0.9014 0.9520 0.9744 0.9714
0.9491 0.9008)

9. 20sin function: Number of Variables: n =100. The
theoretical maximum is n when / 2,ix jπ π= +

0,1,2,j = L .

 () ()20
1

1

, , sin
n

n i
i

f x x x
=

=∑L (35)

The searched maximum value = 91.0671, the optimal

ox =(1.4857 -7.8411 -4.6816 -4.7119 -1.5208
-4.6401 1.5676 7.8522 1.6444 7.8734 -7.8784
4.7178 -1.5417 -7.8683 1.5590 7.7531 7.8484
-1.5301 -4.7494 -4.8971 1.5430 -4.7074 -1.3356
-1.5826 4.7689 2.9632 -1.5465 1.6441 -1.5685
1.4859 1.5135 1.5899 1.5212 0.1591 -0.9106
1.5329 -4.7451 4.6183 4.7783 7.8759 1.5594
1.5520 -4.8942 -1.5857 -1.5533 4.6714 1.5529
1.6801 1.5276 1.5989 -7.8975 -7.8473 -4.7436
-1.5183 4.7857 7.8521 4.7119 -1.5925 -1.6175
-1.6763 4.7724 -4.7648 -4.6491 1.5808 -7.8505
-7.8527 4.6484 3.7575 4.7969 -1.5098 1.4933
7.8250 1.7861 -1.4387 -1.5806 7.8622 -1.4867
-4.6982 -4.3371 1.5879 1.7464 -1.4736 -7.8447
1.5872 1.5873 -1.5733 -7.9322 4.7021 1.5871
1.5891 -4.7056 1.6080 4.8077 -1.5593 1.5689
-4.7446 -1.5889 -1.4475 -4.7321 1.7987)

In summary, the algorithm testing demonstrates
satisfactory result in accuracy and efficiency.

6. Likelihood-lambda procedure

Likelihood function and procedure plays important
role in safety and reliability modelling, see [1], [10],
and [11]. In this section, we will investigate the
scheme to utilize the lambda algorithm for searching
the numerical solution to a likelihood function.

6.1. Log-likelihood function

Let () ()1 1 2 2| , , , , , , ;N NL f x x xθ ϑ ϑ ϑ θΚ = L with ();f θ⋅

representing the joint distribution of data Κ . This is

then called the likelihood function with respect to
parameter setθ , θ ∈ Θ .

Definition 6.1. Let (){ }, , 1,2, ,i ix i NϑΚ = = L be a

failure-censoring data record, i.e.,

ϑ
event censored a is 1

failure natural a is 0

i

i
i x

x
= (36)

then

 () () ()()∏
= −−

−

−
=Κ

N

i
ii xRxfL ii

1

1 ;;| θθθ ϑϑ (37)

where f is the failure density function and R is the
reliability function.
Definition 6.2. The function then

 () ()()| ln |l Lθ θΚ = Κ (38)

is called the log-likelihood function.
Lemma 6.3. 0θ is an optimal point for()|l θ Κ if and
only if it is an optimal point for ()|L θ Κ .
Note that ()ln ⋅ , whose base is 1e > , is monotone

increasing. Therefore the patterns in ()|L θ Κ will be

well-maintained by ()|l θ Κ and the converse is also

true: then

() (){ }

() (){ }

0

0

| max |

| max |

l l

L L

θ θ

θ θ

Κ = Κ

⇔

Κ = Κ

 (39)

Turning our attention now to wave-like lifetime
distribution of Type I, (see [7], [8]), it has a form:

 ()
2

2
0

sin
1 exp

x s
F x ds

s

αγ

= − − +

∫ (40)

with two-parameter hazard function:

()

[)

2

2

sin

0, , 0, 0

x
h x

x
x

αγ

α γ

= +

∈ +∞ > ≥
 (41)

Theorem 6.4. ([7], [8]) For the Type I wave-like
distribution, the log-likelihood function is:

() ()

2

2
1

2

2
1 0

sin
, | 1 ln

sin

i

N
i

i
i i

xN

i

x
l

x

s
ds

s

αα γ ϑ γ

αγ

=

=

Κ = − +

− +

∑

∑∫

 (42)

The first-order partial derivatives are

SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 69

() ()()

()

() ()

2 2
1

1 0

2

2 2
1 1

, | sin 2 1

sin

sin 2

, | 1

sin

i

N
i i i

i i i

xN

i

N N
i i

i
i ii i

l x x

x x

s
ds

s

l x
x

x x

α γ α ϑ
α γ α

α

α γ ϑ
γ γ α

=

=

= =

∂ Κ −
=

∂ +

−

∂ Κ −
= −

∂ +

∑

∑∫

∑ ∑

 (43)

and the second-order order partial derivatives are

() ()() ()
()

()

()

() () ()
()

() ()
()

2 2 22
2

22 2 2
1

1

2 3

22 2
1

2 4

22 2 2
1

2cos 2 sin sin 2, |
1

sin

1
 sin 2

, | 1 sin 2

sin

, | 1

sin

N
i i i i

i i
i

i i

N

i
i

N
i i i

i
i i

N
i i

i
i i

x x x xl
x

x x

x

l x x

x x

l x

x x

α γ α αα γ
ϑ

α γ α

α
α

α γ ϑ α
α γ γ α

α γ ϑ
γ γ α

=

=

=

=

+ −∂ Κ
= −

∂ +

−

∂ Κ −
= −

∂ ∂ +

∂ Κ −
= −

∂ +

∑

∑

∑

∑

(44)

Theorem 6.5. For the Type II wave-like lifetime
distribution with 2 parameters, and a hazard function
of the form xxxh /)sin()(αγ += , the log-likelihood
function in the presence of both failures and censored
data is

() () ()

()
1

1 1 0

sin
, | 1 ln

sin

i

N
i

i
i i

xN N

i
i i

x
l

x

s
x ds

s

α
α γ ϑ γ

α
γ

=

= =

Κ = − +

− −

∑

∑ ∑∫

 (45)

The first-order partial derivatives are

() () ()
()

()

() () ()

1

1

1 1

, | cos
1

sin

1
 sin

, |
1

sin

N
i i

i
i i i

N

i
i

N N
i

i i
i ii i

l x x

x x

x

l x
x

x x

α γ α
ϑ

α γ α

α
α

α γ
ϑ

γ γ α

=

=

= =

∂ Κ
= −

∂ +

+

∂ Κ
= − −

∂ +

∑

∑

∑ ∑

 (46)

and the second-order partial derivatives are

() () ()
()()

() ()

() () ()
()()

() ()
()()

2
2

2 2
1

2
1 1

2 2

2
1

2 2

2 2
1

, | sin 1
1

sin

1 1
 sin cos

, | 1 cos

sin

, | 1

sin

N
i i

i i
i

i i

N N

i i i
i i

N
i i i

i
i i

N
i i

i
i i

l x x
x

x x

x x x

l x x

x x

l x

x x

α γ γ α
ϑ

α γ α

α α
αα

α γ ϑ α
α γ γ α

α γ ϑ
γ γ α

=

= =

=

=

∂ Κ +
= − −

∂ +

− +

∂ Κ −
= −

∂ ∂ +

∂ Κ −
= −

∂ +

∑

∑ ∑

∑

∑

(47)

Remark 6.6. Theorem 6.4 and 6.5 facilitate classical
maximum likelihood estimation with derivatives up
to the second order for the two types of wave-like
lifetime distributions. Reliability engineers can use
these two theorems for modeling and analysis in
traditional Newton-Raphson procedure or use semi-

derivative or non-derivative Likelihood-GA
procedure if they do not mind the computation time
consumptions. To reach a better efficiency, we
intend to switch our attention to replacing the GA
part by lambda algorithm.

6.2. An likelihood-lambda algorithm example

The ML-lambda procedure for searching solutions to
the joint non-linear equation system:

()
()

, | 0

, | 0

l

l

α γ α
α γ γ

∂ Κ ∂ =
∂ Κ ∂ =

 (48)

because the integral term appears in the wave-like
log-likelihood function. The searching results for the
two models are listed in Table 7.

Table 7. The MLE of parameters for wave-likelihood
lifetime distributions

Type I II
0.0412

(0.01310)
α̂ 6.5202

(0.00169)
0.0961

(0.0006961)
0.0001

(0.00001)
γ̂ 0.0001

(0.00001)
0.0206

(0.0000085)
-1719.2372 ()ˆ ˆ, |l Kα γ -3293.1074
-36496.9421
2.5757e-008 Accuracy 5.5807e-008
2.1534e-006
17.0387 sec. Computation

time
17.9384 sec.

74.9782 sec.

In the Table 7, for the parameter estimate columns,
the top figures are the estimators whereas the figures
in brackets are estimated standard deviations.
It is observed that in the case of Type I, the first pair
gives the local maximum (()ˆ ˆ, |l Kα γ = -3293.1074),

the second is a global (()ˆ ˆ, |l Kα γ = -1719.2372),

whereas one suspects that the Type II model is a
better description of the failure/repair process in
operation here (()ˆ ˆ, |l Kα γ = -36496.9421). We found

two optimal solutions for Type II model (blue is the
first, black is the second). The following three
figures plot the estimated hazard functions and e-
score plots.

Cui Yanhong, Guo Renkuan
Lambda algorithm and maximum likelihood estimation

 70

Figure 6. The estimated hazard function of Type I
wave-like lifetime distribution (̂α =6.5202, ̂γ =0.0001)
and approximated e-score plot

Figure 7. The estimated hazard function of Type I
wave-like lifetime distribution (̂α =0.0412,̂γ = 0.0001)
and approximated e-score plot

Figure 8. The estimated hazard function of Type II
wave-like lifetime distribution (̂α =0.0961, ̂γ =0.0206)
and approximated e-score plot

Remark 6.7. The e-score plot (Lawless [11]) is based
on a fact that

() ()
0

ˆ ˆˆ ; , exp
ix d

i ie h s ds xα γ= −∫ � (49)

and

 ()
1

1
ˆE

1

i

i
l

e
n l=

 = − +∑ (50)

where ()ˆ
ie is the thi order statistic in calculated e-

scores{ }1 2ˆ ˆ ˆ, , , Ne e eL . E-score plot plots (()ˆ
ie ,

()ˆE ie

),

1,2, ,i N= L . If the plot demonstrates a straight-line
then the good-fitness of the maximum likelihood is
good enough. From the three e-score plots, we see
similar patterns, but Type I model global result in
Figure 7 (α̂ =0.0412,̂γ = 0.0001) convinces us more.

7. Conclusion

In this paper, we introduce the new lambda algorithm
first, and then investigate the underlying operating
mechanism of the lambda algorithm. Furthermore,
we explore the merging the lambda algorithm with
maximum likelihood procedure. We have a detailed
illustrative application. In the future, we will strive to
explore more safety and reliability applications.

Acknowledgements

This research is supported by the South African
National Research Foundation (IFR2010042200062)
and (IFR2009090800013). The authors are grateful
to Professor Charles Ernie Love (Simon Fraser
University, Canada) for his data collection, and
preliminary analysis efforts from the National
Cement Company of the United Arab Emirates
presented in the likelihood-lambda illustrative
example.

SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 71

References

[1] Ben-Gal, I. (2007). Bayesian Networks, in
Ruggeri F., Faltin F. & Kenett R. Encyclopedia of
Statistics in Quality & Reliability, Wiley & Sons.

[2] Blischke, W.R. & Murthy, D.N.P. (2000).
Reliability – Modeling, Prediction, and
Optimization. John Wiley & Sons, Inc. New York.

[3] Buntine, W. (1994). Operations for learning with
graphical models. Journal of Artificial
Intelligence Research 2.

[4] Cui, Y.H., Guo, R. & Guo, D. (2009). A Naïve
five-element string algorithm. Journal of
Software, 4,9, 925-934.

[5] Cui, Y., Guo, R., Dunne, T. & Guo, D. (2010).
Lambda algorithm. Journal of Uncertain Systems,
4, 1, 22-23.

[6] Cui, Y., Guo, R., Savsani, V., Rao, R. & Vakharia,
D. (2008). Harmony element algorithm- A naïve
initial searching Range. Proc. of the International
conference on Advances in mechanical
engineering, 479-484.

[7] Guo, R., Guo, D. & Cui, Y.H. (2010). Wave-like
bathtub hazard function. Proc. of the Ninth
International Conference on Information and
Management Sciences, 434-440.

[8] Guo, R., Love, C.E. & Cui, Y.H. (2010).
Maximum Likelihood Estimation of 2-Parameter
Wave-Like Lifetime Distributions. Advanced
Reliability Modeling IV – Beyond the Traditional
Reliability and Maintainability Approaches. Proc.
of the 4th Asia-Pacific International Symposium,
225-232.

[9] Kjrulff, U. (1992). A computational scheme for
reasoning in dynamic probabilistic networks,
Proc. of the Eighth Conference on Uncertainty in
Artificial Intelligence, 121-129.

[10] Lawless, J.F. (1982). Statistical Models and
Methods for Lifetime Data. Wiley, NY.

[11] Ushakov, I.A. (1994). Handbook of Reliability
Engineering. John Wiley & Sons, Inc., New York.

Cui Yanhong, Guo Renkuan
Lambda algorithm and maximum likelihood estimation

 72

