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1. Introduction 
 

Safety and reliability optimization problems are a 
fundamental components intrinsically in the sense 
that the statistical theory underlying them is built up 
by a pile of relevant mathematical optimal theories 
and methodologies. However, since the 911 event 
occurred in New York, 2001, the threat from the 
terrorist organizations has merged into the western 
governments’ agenda list [7], [15], [16]. Any 
government or a utility company, say, the electricity 
power plant, the water supply company, the public 
transportation network, the international airport, etc.  
has the responsibility to secure the highest safety and 
availability to the public, while the  terrorist 
organization wants to destroy or damage the target to 
the maximum. It is obvious that the players in the 
game battle are non-corporative. The optimization 
problem is no longer the traditional one. Nash 
equilibrium is “a solution concept of a game 
involving two or more players, in which each player 
is assumed to know the equilibrium strategies of the 
other players, and no player has anything to gain by 
changing only his own strategy unilaterally”, [12]. 
To obtain the solution set of the Nash equilibrium, it  
 

 
is necessary to search it within the players’ strategy 
sets. There have been many search methodologies, 
for example, Nash-LQ, Nash-polynomial algorithms 
etc.  
It is noticeable that researchers have try to merge 
Nash equilibrium solution and the genetic algorithm 
(abbreviated by Nash-GA) for seeking optimal 
numerical strategies [21], [24]. The lambda 
algorithm is created by imitating an ancient human 
body system [4], [5], [6], also the sister paper in this 
seminar, "Lambda algorithm and maximum 
likelihood estimation". In its searching scheme, 
except the necessary mathematical computations for 
evaluating the objective function and the creation of 
the initial “searching population” randomly, the 
algorithm only involves if-else logical operation and 
sort procedure. In contrast to existing global 
optimization algorithms, particularly GA, the lambda 
algorithm engages the simplest mathematics but 
reaches the highest searching efficiency. Therefore it 
is logical to consider in the Nash-GA replacing the 
genetic algorithm (GA) part by the lambda algorithm 
for merging Nash equilibrium solution concept with 
lambda algorithm to achieve the optimal numerical 
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strategies because of the merits of it comparing to 
GA. 
The remaining structure of the paper is stated as 
following: Section two serves the explanation of the 
Nash equilibrium solution and related theory; Section 
three will analyze the merging of Nash equilibrium 
solution and lambda algorithm and analyzing an 
numerical example to illustrate the new Nash-lambda 
algorithm; Section four will discuss briefly the 
applications in safety and reliability optimizations; 
Section five concludes this paper. 
 
2. Nash equilibrium solution concept 
 

The game theory is a applied mathematical branch 
dealing with the behaviour in strategic situations, in 
which an individual's gain in making choices 
depends on the choices of the individual's 
competitors. Game theory studies theory on the 
rational side of social science in broad sense, 
including human as well as non-human players e.g., 
computers, animals, and etc., [10]. 
In n-player non-corporative games, the Nash 
equilibrium is a solution state, in which an individual 
player knows the strategies of the others and also 
knows that no one can gain anything by altering any 
individual strategy unilaterally while the others keep 
their strategies unchanged. Such a set of strategy 
choices and the corresponding payoffs constitute a 
Nash equilibrium, [12]. 
Let ( ),S f  be a game with n players, in which 

1 2 nS S S S= × ×L  is the strategy-profile set with the 
thi player's strategy set iS , 1,2, ,i n= L , and 

( ) ( )( )1 , , nf f f x f x= L   is the payoff function. When each 

individual player decides to choose the strategy ix , 

then a strategy profile ( )1, , nx x x= L is obtained so 

that the thi player i obtains payoff ( )if x . Let ix− be a 

strategy profile of all players except for thethi player. 
Note that the payoff depends on the strategy profile 
chosen, i.e. on the strategy chosen by player i as well 
as the strategies chosen by all the remaining players. 
Definition 1. A strategy profile *x S∈ is Nash 
equilibrium if no unilateral deviation in strategy by 
any individual player is profitable for that player, 
that is  

( ) ( )* * * *, , : , , .i i i i i i i i i ii x S x x f x x f x x− −∀ ∈ ≠ ≥  (1) 

A game can have either a pure-strategy or a mixed-
strategy Nash Equilibrium, (in the latter a pure 
strategy is chosen stochastically with a fixed 
frequency). Nash proved that if we allow mixed 
strategies, then every game with a finite number of 

players in which each player can choose from finitely 
many pure strategies has at least one Nash 
equilibrium solution [11], [12]. 
 
2.1. Bi-level program     
 

In the multilevel programming problem, the    notation 
level is actually the sets of variables. For example, a  
bi-level program, (bi-level programming) has two 
sets of variables [9]. 
Definition 2. A bi-level program is the optimization 
problem within which one optimization problem is 
embedded in another one.  
As a matter of fact, the formulation of a bi-level 
programming problem can be stated simply as: 

   ( )
,

min ,u
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where the variables zare dummy variables. 
 
2.2. Stackelberg model   
 

Decision making problems in decentralized 
organizations are often modelled as Stackelberg 
competitions, which are formulated as two-level 
mathematical programming problems [13], [19], 
[22], [23]. Conflict and cooperation among 
individual players are an essential part of the process. 
In the Stackelberg game model, there are two kinds 
of players; the player of the first kind chooses a 
strategy at the start, and thereafter the player of the 
second kind with knowledge of the player’s strategy 
of the first kind determines a strategy of the player of 
the second kind.  
In game theory, players are classified as a leader and 
the remaining ones as the followers. Stackelberg 
model is a strategic game in which "the leader firm 
moves first and then the follower firms move 
sequentially", ...., the constraints for maintaining the 
Stackelberg equilibrium is that "the leader must 
know ex ante that the follower observes his action. 
The follower must have no means of committing 
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to a future non-Stackelberg follower action" [13]. 
"The Stackelberg model can be solved to find the 
subgame perfect Nash equilibrium or equilibria 
(SPNE), i.e. the strategy profile that serves best each 
player, given the strategies of the other player and 
that entails every player playing in a Nash 
equilibrium in every subgame" [13]. 
Definition 3. Let Nx∈ R be partitioned as ( ),x x xα β= , 

and a compact set N⊂S R . Let : Nf →R R and be 
continuous on S . The set 

( ) ( )
{ }

( )
ˆ

ˆ ˆ| maxf
x x x

x f x f x
β β∈ =

 
ℜ ∈ = 

 I

�
S

S S| is the one of 

rational reactions under function f  on the set S.  
To formally define the n-player Stackelberg game 
model, let Nx∈ R  be the vector of decision variables 
for all n players, and let x be partitioned among n 

players with ( )1 2, , , k

k

Nk k k k
Nx x x x ∈� L R , 1,2, , .k n= L  

Note that 
1

n

kk
N N

=
=∑ . The game model requires all 

n players  take x from lS , whose shape determines 
the ability of the leader player to affect the set of 
feasible choices of the follow players. Let 

: k
kf →S R , 1,2, , ,k n= L  ( ) ( ) ( ){ }1 2, , , nf x f x f xL  the 

set of continuous functions. 
Definition 4. Letx be partitioned as ( ),x x xα β=  with 

( )1 2 1, , , kx x x xα −
� L and ( )1, , ,k k nx x x xβ +

� L . The 

level-k feasible region ( )
1

1

k

k k
f −

−ℜ�S S  recursively 

for 2,3, , .k n= L  
The set kS collects the feasible outcomes resulting 
from the rational reactions of players at level-i,  

1,2, , 1.i k= −L . Hence kS  contains all of the 
information necessary for player i to evaluate the 
behaviour of these players. Given the preemptive 
decisions  ( )1 2ˆ ˆ ˆ, , ,k k nx x x+ +

L  of the first n − k leading 

players, the optimization problem which must be 
solved by the player at level k is then 

   

( ) ( ): max

s.t. 

,

ˆ ,  1, ,

k
k

k

i i

L f x

x

x x i k n

∈
= = + L

S
 (5) 

This presents a nested multi-level programming 
problem. 
It is quite obvious that Stackelberg model, a pure 
strategy optimization may have only one Nash 
equilibrium, while mixed strategies could have 
finitely many Nash equilibria (at least one). The 
lambda algorithm is designed for both pure strategy 
and mixed strategies optimization for bi-level 

programming, which is named as Nash-lambda 
algorithm.  
Nash-lambda algorithm allowed program at each 
loop of optimization evaluate two strategy objective 
functions. A switch function to decide the rank of all 
the candidate solutions. If switch=0, then the 
algorithm according to leader objective function to 
rank the candidate solutions. If switch=1, then the 
algorithm according to follower objective function to 
rank the candidate solutions. best

leadersTempF , best
followersTempF  

are two variables, which using to record the best 
optimization result of leader, follower objective 

function in the elapsed optimization. best
leaderse is the 

best fitness string of leader objective function at 

current loop. best
followerse is the best fitness string of 

follower objective function at current loop. best
leadersF , 

judge
leadersF are fitness values of  best

leaderse  from leader, 

follower objective function evaluation respectively. 

Similarly, best
followersF , judge

followersF are fitness values of  
best
followerse  from follower, leader objective function 

evaluation respectively.  
In pure strategy optimization:  
If best best

followers followersF TempF≥ , Switch=0 

Else if best best
leaders leadersF TempF≥ , Switch=1,  

End 
The above program code meaning, for leader 
objective function and follower objective function, 
each different strategy optimization only allowed 
jumping once at the algorithm. After one objective 
function have a better fitness value, and then the 
algorithm must turn to face another objective to do 
the optimization. If the algorithm running towards to 
leader objective function optimization, one selected 

strings vector first
newe must let all the candidate solution 

take the leader variables values given bybest
leaderse . The 

meaning is, except best
leaderse , other strings must copy 

the digits which represent the leader objective 
function variable best

leaderse has. Similarly, if the 

algorithm running towards to follower objective 
function optimization, one selected strings vector 

first
newe must let all the candidate solution take the 

follower variables values given bybest
followerse .  

The optimization result is, after “step by step”, or say 
one time by one time altering optimization, if one 
way of the optimization is stopped, which meaning 
one way of the strategy is successful, a pure strategy 
reaches the Nash equilibrium.  
In mixed strategies optimization: 
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If judge best
leaders followersF TempF≥ , Switch=0 

Else if judge best
followers leadersF TempF≥ , Switch=1,  

End  
The above program code meaning, instead of “step 
by step” altering optimization, the algorithm allowed 
optimization continues jumping at one direction. 
Only when the current best fitness is the best fitness 
of both leader and follower objective function, the 
algorithm allowed the optimization towards to 
another way. The optimization result is more 
balanced in this way, which can give many more 
Nash equilibrium for different strategies.  The flow 
chart of Nash-lambda algorithm is showing in Figure 
1.  
 
3. A numerical example     
 

In this section, we consider a bi-level programming 
with free followers in which the leader has a decision 

vector ( )1 2 3, ,x x x and the three followers have 

decision vectors ( )1 2, , 1,2,3,i iy y i = see [1]. 
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1 2 3 1 2 3

* * * * * *
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,
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max sin 2 sin 3 sin

subject to:

10, 0, 0, 0,

, , , ,  solves the problems
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y y y y y y
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, 0, 0

y y

y y

y y y y

y y x y y

y y y y
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 ≥

 +

 + ≤ ≥ ≥

 +


 + ≤ ≥ ≥


 

(6) 

 
A run of Nash-lambda algorithm 120 generations 
show that (pure strategy)  

   

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 3

11 12

21 22

31 32

, , 1.0371,0.7698,8.1155

, 0.6569,0.3796

, 0.3639,0.3805

, 2.1396,5.9705

x x x

y y

y y

y y

∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

=

=

=

=

 

 
With optimal objective values 
    

* * * * * *
11 12 1 21 22 2 31 32 3

11 12 12 11

21 22 22 21

31 32 32 31

sin 2 sin 3 sin 37.4278

sin sin 0.4752

sin sin 0.2705

sin sin 4.3722

y y x y y x y y x

y y y y

y y y y

y y y y

+ + =
+ =
+ =
+ =

 

The pure strategy made leader objective value 
reaches maximum.  
A run of Nash-lambda algorithm 26 generations 
show that (mixed strategy)  
 

   

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 3
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21 22
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, 0,0
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With optimal objective values 
 

   

* * * * * *
11 12 1 21 22 2 31 32 3

11 12 12 11

21 22 22 21

31 32 32 31

sin 2 sin 3 sin 36.7114

sin sin 0

sin sin 1.0440

sin sin 4.9058
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A run of Nash-lambda algorithm 44 generations 
show that (pure strategy)  
 

   

( ) ( )
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( ) ( )

1 2 3
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21 22
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, , 3.5833,3.1968,3.1999

, 1.9833,1.6000
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y y
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=

=
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With optimal objective values 
 

   

* * * * * *
11 12 1 21 22 2 31 32 3

11 12 12 11

21 22 22 21

31 32 32 31

sin 2 sin 3 sin -2.0859

sin sin 3.4482

sin sin 3.1955

sin sin 3.1985

y y x y y x y y x

y y y y

y y y y

y y y y

+ + =
+ =
+ =
+ =

 

 
The pure strategy made followers objective value 
reaches maximum.  
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Figure 1. Bi-level programming using Nash-lambda 
algorithm operation process 
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4. Applications in safety and reliability 
 

In this section, we will consider a few Nash-lambda 
algorithm applications in the safety and reliability 
field with the focus in Subsection 4.1.  
 
4.1. Maintenance schedule problem     
 

In this subsection, let us examine a maintenance 
scheduling application [18], where the authors 
defined a new index, named lost opportunity cost of 
market participation (LOCMP) since every 
individual generation company (GENCO) targets to 
maximize its profits except the reliability concerns, 
which is monitoring constantly by the Independent 
System Operator (ISO). "ISO as a market supervisor 
is responsible for power system reliability 
preservation" [17], and therefore a player in the 
dynamic game of GENCO against ISO. 
The strategy of each GENCO will maximize the 
profits at the same time will minimize the LOCMP. 
The LOCMP is calculated by 

( )( )max, , max, , ,LOCMP 2
week G

t g t g t t g t
t g

p p p hYα β= − +∑∑  (7) 

where 
tp  Price for a strategy at time t 

max, ,g tp  Power generated by units in stage t (MW) 

,α β  Cost factors (i.e.,1 2,x x ) 

th  Maintenance hours of unit at stage t 

,g tY  Maintenance status of units in stage t (1, or 0) 

Let  

,g tC  Production cost of generation units in stage t 
(i.e., 3x ) 

M
tp  Maintenance cost of generation units 

Then the objective function for a GENCO 

( ) ( )( ), max, , , ,1
week G

M
t g t g t g t t g t

t g

p C p Y p YΛ = − − −∑∑  (8) 

On the other hands, ISO as a player offers a 
disincentive strategy 

   -
52

1

penalty ISO PAYMENTt
t t

t
t

S
p C

S
=

=
∑

 
(9) 

where 
penalty
tp  Penalty Index 

tS  Quadratic Penalty Index 

( )2base offered
t tEIR EIR−  

base
tEIR  Energy Index Reliability calculated by 

ISO 
shows desirable reliability 

offered
tEIR  Energy Index Reliability calculated by 

ISO 

considering offers of GENCOs 
-ISO PAYMENT

tC  Cost paid by ISO for penalty

Cost of energy not supplied





 

Then the objective function is 

( ) ( )( ), max, , , ,1
week G

M penalty
t g t g t g t t g t t

t g

p C p Y p Y pΛ = − − − −∑∑  (10) 

which is again a bi-level program suitable for Nash-
lambda algorithm because the penalty paid by ISO 
needs to be minimized. 
The authors of [18] engaged simulation approach for 
seeking the optimal solution. We engage the Nash-
lambda scheme for searching the optimal solution. 
The objective function we used is 

( ) ( )( )1 max, , max, , , 3 ,1
week G

t g t g t g t t g t
t g

p x p p Y x p YΛ = − − −∑∑  (14) 

and the constraint sub-objective function is  

( )( )2 max, , 3 max, , , ,LOCMP 2
week G

t g t g t g t g t
t g

p x p x p h Y= − +∑∑  (15) 

and thus the bi-level program formation is 

   
( )

( )

1 2 3

1 2 3

1 2 3
, ,

1 2 3, ,

max , ,

s.t.

min LOCMP , ,

x x x

x x x

x x x

x x x

Λ
 (16) 

Because we feel short of information, in the problem 
formulation we identify three cost variable, 1 2 3, ,x x x . 
The Nash-lambda uses 36.1881seconds, 100 loops 
for locating the equilibrium numerical solution:  

   
1 2 399.840, 4.992, 0.000x x x= = =  (17) 

which gives the ( )1 2 3max , , 3.3816 009,x x xΛ = Ε +  

subject to ( )1 2 3min LOCMP , , 8.8654 004.x x x = Ε +  

 
4.2. Anti-terrorism     
 

International terrorism has been a principal concern 
of policy makers and the public since the September 
11 attack, 2001, [7], [13]. "The West" and the " 
International Terrorist Organization (ITO)" are two 
players in an incentive Stackelberg game model [16]. 
The objective function is 

( ) ( )1 2 3

0

, ,
T

rt rT
t t t Tx w v e x w v dt e sxγ γ γ− −Λ = − + + +∫  (18) 

and thus the optimization problem is 

( )max , ,
tv

x w vΛ  (19) 

subject to 
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( ) ( ) ( )
( ) ( )
( )
( ) 2

;

1 ;

;

,

t t t t t t t

t t t

t t

t t

x f x w g v w v h v

f x x x

g v v

h v v

µ φ
γ
β

α

= − − − +

= −

=

=

&

 (20) 

where 
0tx ≥  number of terrorists at time t 

0tv ≥  intensity of the West’s terror control activities 
at time t 

0tw ≥  number of ITO attacks at time t  

( )tf x  endogenous growth of ITO at time t 

0µ ≥  average number of terrorists killed or arrested 
per attack 

( )tg v  number of terrorists lost per terror attack due 
to terror control efforts v(t), 

0φ ≥  rate at which terror control operations would 
deplete ITO if the West is on full counter-
offensive 

( )th v  growth of ITO at time t due to hatred caused 
by collateral damage induced by (low-
specificity) terror control 
activities of the West. 

with γ , β , and α being positive constants. 
The constraint should be the ITO wants to maximize 
the attacks' damages. It can be solved by a bi-level 
program and hence Nash-lambda algorithm is able to 
search its solution by changing the equality 
constraints into a set of inequality constraints in 
terms of additional explanatory variables. 
 
4.3. Reliability and free riding     
 

Another interesting of application is the problem of 
the reliability of public systems. It is well-known fact 
that the public systems cost the tax payers dearly, 
however, certain corner of the society (typically 
those never paid one cent for tax) always steal or 
damage these goods for self-benefiting. The problem 
is again a n-player non corporative game. Let 

ix  The effort tried by agent i = 1,2; 

( )( )1 2,p F x x  The probability of successful 
operation of the system; 

iv  The reward received by agent i 
from successful operation of the 
system; 

i ic x  The cost paid by agent i from 
successful operation of the system. 

Then the expected social payoff 

( )( )( ) ( )1 2 1 2 1 1 2 2,p F x x v v c x c x+ − +  (14) 

As the specification of ( )1 2,F x x , Sandler and 

Hartley [20] and Varian [25] considers three regimes: 
 
 

Total effort: ( )1 2 1 2,F x x x x= + ; 

Weakest 
link:  

( )1 2 1 2,F x x x x= ∧ ; 

Best shot: ( )1 2 1 2,F x x x x= ∨ ; 

Then the aim is 

( )( )( ) ( )( )
1 2

1 2 1 2 1 1 2 2
,

max ,
x x

p F x x v v c x c x+ − +  (15) 

The constraint is to minimize the agents' cost. The 
Nash equilibrium solution depends upon the regime 
committed.  Free-riding occurs under certain 
conditions. However, the functional form of  

( )1 2,F x x in [20] and [25] is oversimplified, if  

( )1 2,F x x is non-linear in 1x and 2x , then the Nash-

lambda algorithm needs to step in for searching 
numerical solutions.  
 
4.4. Optimal maintenance services     
 

In this subsection, we consider the problem of 
equipment maintenance by an external subcontractor. 
The owner of the equipment and the subcontractor 
are two players under non-corporative game. Both 
parts want the maximized profits [14]. This is a bi-
level program and it is appropriate to use the Nash-
lambda algorithm to search optimal solution.  
 
5. Conclusion 
  

In this paper, we investigate the merging with Nash 
equilibrium solution with lambda algorithm, which is 
a type of Bayesian network, [2], [3], [8], [17]. We 
have successfully created a merged algorithm and 
coded it in details, i.e. at bi-level program with two 
players. Frankly, the numerical example in Section 3 
does not link to safety and reliability. However, just 
this example triggered our interest to investigate the 
merging and programming the new algorithm 
because the problem formulation is strictly revealing 
the requirements in Definition 2.1. To cope the spirit 
of the conference, we give a detailed reliability 
example in Subsection 4.1 for illustrations. In the 
future, we will strive to increase the number of the 
players first and then the 3-level, and so on.  The 
application examples in this paper are not detailed 
because of the page limitation and time-constraints. 
We will improve the paper in this aspect. 
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